Joint Distribution of First-Passage Time and First-Passage Area of Certain Lévy Processes
Let be X ( t ) = x − μ t + σ B t − N t a Lévy process starting from x > 0, where μ ≥ 0, σ ≥ 0, B t is a standard BM, and N t is a homogeneous Poisson process with intensity θ > 0, starting from zero. We study the joint distribution of the first-passage time below zero, τ ( x ), and the first-p...
Gespeichert in:
Veröffentlicht in: | Methodology and computing in applied probability 2019-12, Vol.21 (4), p.1283-1302 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let be
X
(
t
) =
x
−
μ
t
+
σ
B
t
−
N
t
a Lévy process starting from
x
> 0, where
μ
≥ 0,
σ
≥ 0,
B
t
is a standard BM, and
N
t
is a homogeneous Poisson process with intensity
θ
> 0, starting from zero. We study the joint distribution of the first-passage time below zero,
τ
(
x
), and the first-passage area,
A
(
x
), swept out by
X
till the time
τ
(
x
). In particular, we establish differential-difference equations with outer conditions for the Laplace transforms of
τ
(
x
) and
A
(
x
), and for their joint moments. In a special case (
μ
=
σ
= 0), we show an algorithm to find recursively the moments
E
[
τ
(
x
)
m
A
(
x
)
n
], for any integers
m
and
n
; moreover, we obtain the expected value of the time average of
X
till the time
τ
(
x
). |
---|---|
ISSN: | 1387-5841 1573-7713 |
DOI: | 10.1007/s11009-018-9677-5 |