Joint Distribution of First-Passage Time and First-Passage Area of Certain Lévy Processes

Let be X ( t ) = x − μ t + σ B t − N t a Lévy process starting from x > 0, where μ ≥ 0, σ ≥ 0, B t is a standard BM, and N t is a homogeneous Poisson process with intensity θ > 0, starting from zero. We study the joint distribution of the first-passage time below zero, τ ( x ), and the first-p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methodology and computing in applied probability 2019-12, Vol.21 (4), p.1283-1302
Hauptverfasser: Abundo, Mario, Furia, Sara
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let be X ( t ) = x − μ t + σ B t − N t a Lévy process starting from x > 0, where μ ≥ 0, σ ≥ 0, B t is a standard BM, and N t is a homogeneous Poisson process with intensity θ > 0, starting from zero. We study the joint distribution of the first-passage time below zero, τ ( x ), and the first-passage area, A ( x ), swept out by X till the time τ ( x ). In particular, we establish differential-difference equations with outer conditions for the Laplace transforms of τ ( x ) and A ( x ), and for their joint moments. In a special case ( μ = σ = 0), we show an algorithm to find recursively the moments E [ τ ( x ) m A ( x ) n ], for any integers m and n ; moreover, we obtain the expected value of the time average of X till the time τ ( x ).
ISSN:1387-5841
1573-7713
DOI:10.1007/s11009-018-9677-5