Experimental study on a novel photovoltaic thermal system using amorphous silicon cells deposited on stainless steel

Amorphous silicon (a-Si) cells are able to perform better as temperature increases due to the effect of thermal annealing. a-Si cells have great potential to solve or ease the problems of high power temperature coefficient, large thermal stress caused by temperature fluctuation and gradient, and thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2018-09, Vol.159, p.786-798
Hauptverfasser: Li, Jing, Ren, Xiao, Yuan, Weiqi, Li, Zhaomeng, Pei, Gang, Su, Yuehong, Kutlu, Çağrı, Ji, Jie, Riffat, Saffa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Amorphous silicon (a-Si) cells are able to perform better as temperature increases due to the effect of thermal annealing. a-Si cells have great potential to solve or ease the problems of high power temperature coefficient, large thermal stress caused by temperature fluctuation and gradient, and thick layer of conventional crystalline silicon cell-related photovoltaic/thermal (PV/T) collectors. In this paper, an innovative a-Si PV/T system is developed. It is the first time that a-Si cells deposited on stainless steel have been used in a practical PV/T system. The system comprises of two PV/T collectors. In each collector, there are 8 pieces of solar cells in series. Long-term outdoor performance has been monitored. Experimental results on the thermal efficiency (ηth), electrical efficiency (ηPV) and I-V characteristic are presented. The peak instantaneous ηth,p was about 42.49% with the maximum ηPV,p of 5.92% on April 2, 2017. The daily average ηth,a and ηPV,a were 32.8% and 5.58%. Accordingly, ηth,p, ηPV,p, ηth,a and ηPV,a on October 27 were 43.47%, 5.69%, 38.65% and 5.22%. During more than half a year operation, no technical failure of the system has been observed. The feasibility of the a-Si PV/T is preliminarily demonstrated by the prototype. •A novel PV/T system using a-Si cells deposited on stainless steel is developed.•Long-term outdoor experiment of the system has been conducted.•Electrical and thermal efficiencies of 5.22% and 38.65% at DSS can be achieved.•The feasibility of a-Si PV/T is preliminarily demonstrated by the prototype.
ISSN:0360-5442
1873-6785
DOI:10.1016/j.energy.2018.06.127