Homogenization of the heat equation with a vanishing volumetric heat capacity

This paper is devoted to the homogenization of the heat conduction equation, with a homogeneous Dirichlet boundary condition, having a periodically oscillating thermal conductivity and a vanishing volumetric heat capacity. A homogenization result is established by using the evolution settings of mul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-06
Hauptverfasser: Danielsson, Tatiana, Johnsen, Pernilla
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is devoted to the homogenization of the heat conduction equation, with a homogeneous Dirichlet boundary condition, having a periodically oscillating thermal conductivity and a vanishing volumetric heat capacity. A homogenization result is established by using the evolution settings of multiscale and very weak multiscale convergence. In particular, we investigate how the relation between the volumetric heat capacity and the microscopic structure effects the homogenized problem and its associated local problem. It turns out that the properties of the microscopic geometry of the problem give rise to certain special effects in the homogenization result.
ISSN:2331-8422