Seasonal and Flood‐Induced Variations in Groundwater–Surface Water Exchange in a Northern Coldwater Fishery

Groundwater upwelling is important to coldwater fisheries survival. This study used stable isotopes to identify upwelling zones within a watershed, then combined isotope analyses with reach‐scale monitoring to measure surface water–groundwater exchange over time. Research focused on Amity Creek, Min...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Water Resources Association 2018-10, Vol.54 (5), p.1109-1126
Hauptverfasser: Jasperson, Jenny L., Gran, Karen B., Magner, Joseph A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Groundwater upwelling is important to coldwater fisheries survival. This study used stable isotopes to identify upwelling zones within a watershed, then combined isotope analyses with reach‐scale monitoring to measure surface water–groundwater exchange over time. Research focused on Amity Creek, Minnesota, a basin that exemplifies conditions limiting coldwater species survival along Lake Superior's North Shore where shallow bedrock limits groundwater capacity, lowering baseflows and increasing temperatures. Groundwater‐fed reaches were identified through synoptic isotope sampling, with results highlighting the importance of isolated shallow surficial aquifers (glacially derived sands and gravels) for providing cold baseflow waters. In an alluvial reach, monitoring well results show groundwater was stored in two reservoirs: one that reacts quickly to changes in stream levels, and one that remained isotopically isolated under most flow conditions, but which helps sustain summer baseflows for weeks to months. A 500‐year flood demonstrated the capacity of high‐flow events to alter surface water–groundwater connectivity. The previously isolated reservoir was exchanged or mixed during the flood pulse, while incision lowered the water table for years. The results here provide insight for streams that lack substantial groundwater inputs yet maintain coldwater species at risk in a warming climate and an approach for managers seeking to protect cold baseflow sources. Research Impact Statement: Watershed management to maintain coldwater fisheries should include protection of surface water–groundwater exchange zones in the riparian corridor. Stable isotopes can be useful in identifying these zones.
ISSN:1093-474X
1752-1688
DOI:10.1111/1752-1688.12674