Adaptive Fuzzy Command Filtered Control for Chua’s Chaotic System
In this paper, we propose the command filtered adaptive fuzzy backstepping control (AFBC) approach for Chua’s chaotic system with external disturbance. Based on two proposed first-order command filters, the convergence of tracking errors as well as the problem of “explosion of complexity” in traditi...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2018-01, Vol.2018 (2018), p.1-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we propose the command filtered adaptive fuzzy backstepping control (AFBC) approach for Chua’s chaotic system with external disturbance. Based on two proposed first-order command filters, the convergence of tracking errors as well as the problem of “explosion of complexity” in traditional backstepping design procedure is solved. In the command filtered AFBC design, we do not need to calculate the complicated partial derivatives of the virtual control inputs. Fuzzy logic systems (FLSs) are used to identify the system uncertainties in real time. Based on Lyapunov stability criterion, the proposed controller can guarantee that all signals in the closed-loop system keep bounded, and the tracking errors converge to a small region eventually. Finally, simulation studies have been provided to verify the effectiveness of the proposed method. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2018/9635358 |