Critical and maximum independent sets of a graph

Let G be a simple graph with vertex set VG. A set A⊆VG is independent if no two vertices from A are adjacent. If αG+μG=|VG|, then G is called a König–Egerváry graph (Deming, 1979; Sterboul, 1979), where αG is the size of a maximum independent set and μG stands for the cardinality of a largest matchi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2018-10, Vol.247, p.127-134
Hauptverfasser: Jarden, Adi, Levit, Vadim E., Mandrescu, Eugen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be a simple graph with vertex set VG. A set A⊆VG is independent if no two vertices from A are adjacent. If αG+μG=|VG|, then G is called a König–Egerváry graph (Deming, 1979; Sterboul, 1979), where αG is the size of a maximum independent set and μG stands for the cardinality of a largest matching in G. The number dX=X−N(X) is the difference of X⊆VG, and a set A⊆VG is critical if d(A)=max{dX:X⊆VG} (Zhang, 1990). In this paper, we present various connections between unions and intersections of maximum and/or critical independent sets of a graph, which lead to new characterizations of König–Egerváry graphs.
ISSN:0166-218X
1872-6771
DOI:10.1016/j.dam.2018.03.058