Critical and maximum independent sets of a graph
Let G be a simple graph with vertex set VG. A set A⊆VG is independent if no two vertices from A are adjacent. If αG+μG=|VG|, then G is called a König–Egerváry graph (Deming, 1979; Sterboul, 1979), where αG is the size of a maximum independent set and μG stands for the cardinality of a largest matchi...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2018-10, Vol.247, p.127-134 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let G be a simple graph with vertex set VG. A set A⊆VG is independent if no two vertices from A are adjacent. If αG+μG=|VG|, then G is called a König–Egerváry graph (Deming, 1979; Sterboul, 1979), where αG is the size of a maximum independent set and μG stands for the cardinality of a largest matching in G.
The number dX=X−N(X) is the difference of X⊆VG, and a set A⊆VG is critical if d(A)=max{dX:X⊆VG} (Zhang, 1990).
In this paper, we present various connections between unions and intersections of maximum and/or critical independent sets of a graph, which lead to new characterizations of König–Egerváry graphs. |
---|---|
ISSN: | 0166-218X 1872-6771 |
DOI: | 10.1016/j.dam.2018.03.058 |