Secure domination in proper interval graphs
A subset S of vertices in a graph G is a secure dominating set of G if S is a dominating set of G and, for each vertex u∉S, there is a vertex v∈S such that uv is an edge and (S∖{v})∪{u} is also a dominating set of G. The secure domination number γs(G) is the cardinality of a smallest secure dominati...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2018-10, Vol.247, p.70-76 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A subset S of vertices in a graph G is a secure dominating set of G if S is a dominating set of G and, for each vertex u∉S, there is a vertex v∈S such that uv is an edge and (S∖{v})∪{u} is also a dominating set of G. The secure domination number γs(G) is the cardinality of a smallest secure dominating set of G. In this paper, we propose a linear-time algorithm for finding the secure domination number of proper interval graphs. |
---|---|
ISSN: | 0166-218X 1872-6771 |
DOI: | 10.1016/j.dam.2018.03.040 |