Secure domination in proper interval graphs

A subset S of vertices in a graph G is a secure dominating set of G if S is a dominating set of G and, for each vertex u∉S, there is a vertex v∈S such that uv is an edge and (S∖{v})∪{u} is also a dominating set of G. The secure domination number γs(G) is the cardinality of a smallest secure dominati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2018-10, Vol.247, p.70-76
Hauptverfasser: Araki, Toru, Miyazaki, Hiroka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A subset S of vertices in a graph G is a secure dominating set of G if S is a dominating set of G and, for each vertex u∉S, there is a vertex v∈S such that uv is an edge and (S∖{v})∪{u} is also a dominating set of G. The secure domination number γs(G) is the cardinality of a smallest secure dominating set of G. In this paper, we propose a linear-time algorithm for finding the secure domination number of proper interval graphs.
ISSN:0166-218X
1872-6771
DOI:10.1016/j.dam.2018.03.040