A rapidly room-temperature-synthesized Cd/ZnS:Cu nanocrystal photocatalyst for highly efficient solar-light-powered CO^sub 2^ reduction

An ideal photocatalyst that can promisingly convert CO2 should have suitable band gap and fully consider the activation of reaction. However, well-designed photocatalytic materials with these aspects are very limited. This study reports a highly efficient CO2 reduction photocatalyst based on ZnS nan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied catalysis. B, Environmental Environmental, 2018-12, Vol.237, p.68
Hauptverfasser: Meng, Xianguang, Zuo, Guifu, Zong, Peixiao, Pang, Hong, Ren, Jian, Zeng, Xiongfeng, Liu, Shanshan, Shen, Yi, Zhou, Wei, Ye, Jinhua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An ideal photocatalyst that can promisingly convert CO2 should have suitable band gap and fully consider the activation of reaction. However, well-designed photocatalytic materials with these aspects are very limited. This study reports a highly efficient CO2 reduction photocatalyst based on ZnS nanocrystals which can be rapidly synthesized at room temperature and operated under solar light irradiation at all-inorganic reaction system. Two functional elements, Cu and Cd, are respectively used as dopant and cocatalyst of ZnS nanocrystal for selective CO2 reduction. Cu+ doping expands the photoabsorption of ZnS into visible light region and the simultaneous Cd2+ surface modification significantly improves the activity of CO2 reduction with 99% formic acid selectivity. A combination of charge density distribution and electronic state studies reveal that the Cd s orbital displays obviously higher density of states near band-edge with a relatively lower lying band center than that of Zn s orbital. This will greatly favor the charge transfer from conduction band of ZnS to the surface state created by Cd2+ for catalyzing CO2 reduction.
ISSN:0926-3373
1873-3883