Green function and Martin kernel for higher-order fractional Laplacians in balls

We give the explicit formulas for the Green function and the Martin kernel for all integer and fractional powers of the Laplacian s>1 in balls. As consequences, we deduce interior and boundary regularity estimates for solutions to linear problems and positivity preserving properties. Our proofs r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2018-10, Vol.175, p.173-190
Hauptverfasser: Abatangelo, Nicola, Jarohs, Sven, Saldaña, Alberto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 190
container_issue
container_start_page 173
container_title Nonlinear analysis
container_volume 175
creator Abatangelo, Nicola
Jarohs, Sven
Saldaña, Alberto
description We give the explicit formulas for the Green function and the Martin kernel for all integer and fractional powers of the Laplacian s>1 in balls. As consequences, we deduce interior and boundary regularity estimates for solutions to linear problems and positivity preserving properties. Our proofs rely on a characterization of suitable s-harmonic functions and on a differential recurrence equation.
doi_str_mv 10.1016/j.na.2018.05.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2114214805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X18301500</els_id><sourcerecordid>2114214805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-b1419a2001cfc7a3fbef7c87cac337513152685035efe381cf54962d134a7b443</originalsourceid><addsrcrecordid>eNp1kL1PwzAQRy0EEqWwM1piTvD5I0nZUAUFqQgGkNgsxzlTl-AUO0Xiv8elrEy3vHd6-hFyDqwEBtXlugym5AyakqmSweyATKCpRaE4qEMyYaLihZLV6zE5SWnNGINaVBPytIiIgbptsKMfAjWhow8mjj7Qd4wBe-qGSFf-bYWxGGKHkbpoflnT06XZ9MZ6ExLNQmv6Pp2SI2f6hGd_d0pebm-e53fF8nFxP79eFlZwPhYtSJgZnjOss7URrkVX26a2xgpRKxCgeNUoJhQ6FE2mlJxVvAMhTd1KKabkYv93E4fPLaZRr4dtzFFJcwDJQTZMZYrtKRuHlCI6vYn-w8RvDUzvdtNrHYze7aaZ0nm3rFztFcz1Xx6jTtZjsNj5iHbU3eD_l38AI0Vz-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2114214805</pqid></control><display><type>article</type><title>Green function and Martin kernel for higher-order fractional Laplacians in balls</title><source>Access via ScienceDirect (Elsevier)</source><creator>Abatangelo, Nicola ; Jarohs, Sven ; Saldaña, Alberto</creator><creatorcontrib>Abatangelo, Nicola ; Jarohs, Sven ; Saldaña, Alberto</creatorcontrib><description>We give the explicit formulas for the Green function and the Martin kernel for all integer and fractional powers of the Laplacian s&gt;1 in balls. As consequences, we deduce interior and boundary regularity estimates for solutions to linear problems and positivity preserving properties. Our proofs rely on a characterization of suitable s-harmonic functions and on a differential recurrence equation.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2018.05.019</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>[formula omitted]-harmonic functions ; Boggio’s formula ; Boundary value problems ; Differential equations ; Green's functions ; Harmonic analysis ; Harmonic functions ; Laplace transforms ; Maximum principles ; Nonlinear systems</subject><ispartof>Nonlinear analysis, 2018-10, Vol.175, p.173-190</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-b1419a2001cfc7a3fbef7c87cac337513152685035efe381cf54962d134a7b443</citedby><cites>FETCH-LOGICAL-c322t-b1419a2001cfc7a3fbef7c87cac337513152685035efe381cf54962d134a7b443</cites><orcidid>0000-0002-4134-0082</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.na.2018.05.019$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Abatangelo, Nicola</creatorcontrib><creatorcontrib>Jarohs, Sven</creatorcontrib><creatorcontrib>Saldaña, Alberto</creatorcontrib><title>Green function and Martin kernel for higher-order fractional Laplacians in balls</title><title>Nonlinear analysis</title><description>We give the explicit formulas for the Green function and the Martin kernel for all integer and fractional powers of the Laplacian s&gt;1 in balls. As consequences, we deduce interior and boundary regularity estimates for solutions to linear problems and positivity preserving properties. Our proofs rely on a characterization of suitable s-harmonic functions and on a differential recurrence equation.</description><subject>[formula omitted]-harmonic functions</subject><subject>Boggio’s formula</subject><subject>Boundary value problems</subject><subject>Differential equations</subject><subject>Green's functions</subject><subject>Harmonic analysis</subject><subject>Harmonic functions</subject><subject>Laplace transforms</subject><subject>Maximum principles</subject><subject>Nonlinear systems</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQRy0EEqWwM1piTvD5I0nZUAUFqQgGkNgsxzlTl-AUO0Xiv8elrEy3vHd6-hFyDqwEBtXlugym5AyakqmSweyATKCpRaE4qEMyYaLihZLV6zE5SWnNGINaVBPytIiIgbptsKMfAjWhow8mjj7Qd4wBe-qGSFf-bYWxGGKHkbpoflnT06XZ9MZ6ExLNQmv6Pp2SI2f6hGd_d0pebm-e53fF8nFxP79eFlZwPhYtSJgZnjOss7URrkVX26a2xgpRKxCgeNUoJhQ6FE2mlJxVvAMhTd1KKabkYv93E4fPLaZRr4dtzFFJcwDJQTZMZYrtKRuHlCI6vYn-w8RvDUzvdtNrHYze7aaZ0nm3rFztFcz1Xx6jTtZjsNj5iHbU3eD_l38AI0Vz-w</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Abatangelo, Nicola</creator><creator>Jarohs, Sven</creator><creator>Saldaña, Alberto</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4134-0082</orcidid></search><sort><creationdate>201810</creationdate><title>Green function and Martin kernel for higher-order fractional Laplacians in balls</title><author>Abatangelo, Nicola ; Jarohs, Sven ; Saldaña, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-b1419a2001cfc7a3fbef7c87cac337513152685035efe381cf54962d134a7b443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>[formula omitted]-harmonic functions</topic><topic>Boggio’s formula</topic><topic>Boundary value problems</topic><topic>Differential equations</topic><topic>Green's functions</topic><topic>Harmonic analysis</topic><topic>Harmonic functions</topic><topic>Laplace transforms</topic><topic>Maximum principles</topic><topic>Nonlinear systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abatangelo, Nicola</creatorcontrib><creatorcontrib>Jarohs, Sven</creatorcontrib><creatorcontrib>Saldaña, Alberto</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abatangelo, Nicola</au><au>Jarohs, Sven</au><au>Saldaña, Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Green function and Martin kernel for higher-order fractional Laplacians in balls</atitle><jtitle>Nonlinear analysis</jtitle><date>2018-10</date><risdate>2018</risdate><volume>175</volume><spage>173</spage><epage>190</epage><pages>173-190</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>We give the explicit formulas for the Green function and the Martin kernel for all integer and fractional powers of the Laplacian s&gt;1 in balls. As consequences, we deduce interior and boundary regularity estimates for solutions to linear problems and positivity preserving properties. Our proofs rely on a characterization of suitable s-harmonic functions and on a differential recurrence equation.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2018.05.019</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-4134-0082</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2018-10, Vol.175, p.173-190
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_journals_2114214805
source Access via ScienceDirect (Elsevier)
subjects [formula omitted]-harmonic functions
Boggio’s formula
Boundary value problems
Differential equations
Green's functions
Harmonic analysis
Harmonic functions
Laplace transforms
Maximum principles
Nonlinear systems
title Green function and Martin kernel for higher-order fractional Laplacians in balls
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A48%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Green%20function%20and%20Martin%20kernel%20for%20higher-order%20fractional%20Laplacians%20in%20balls&rft.jtitle=Nonlinear%20analysis&rft.au=Abatangelo,%20Nicola&rft.date=2018-10&rft.volume=175&rft.spage=173&rft.epage=190&rft.pages=173-190&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2018.05.019&rft_dat=%3Cproquest_cross%3E2114214805%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2114214805&rft_id=info:pmid/&rft_els_id=S0362546X18301500&rfr_iscdi=true