Green function and Martin kernel for higher-order fractional Laplacians in balls
We give the explicit formulas for the Green function and the Martin kernel for all integer and fractional powers of the Laplacian s>1 in balls. As consequences, we deduce interior and boundary regularity estimates for solutions to linear problems and positivity preserving properties. Our proofs r...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2018-10, Vol.175, p.173-190 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 190 |
---|---|
container_issue | |
container_start_page | 173 |
container_title | Nonlinear analysis |
container_volume | 175 |
creator | Abatangelo, Nicola Jarohs, Sven Saldaña, Alberto |
description | We give the explicit formulas for the Green function and the Martin kernel for all integer and fractional powers of the Laplacian s>1 in balls. As consequences, we deduce interior and boundary regularity estimates for solutions to linear problems and positivity preserving properties. Our proofs rely on a characterization of suitable s-harmonic functions and on a differential recurrence equation. |
doi_str_mv | 10.1016/j.na.2018.05.019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2114214805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X18301500</els_id><sourcerecordid>2114214805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-b1419a2001cfc7a3fbef7c87cac337513152685035efe381cf54962d134a7b443</originalsourceid><addsrcrecordid>eNp1kL1PwzAQRy0EEqWwM1piTvD5I0nZUAUFqQgGkNgsxzlTl-AUO0Xiv8elrEy3vHd6-hFyDqwEBtXlugym5AyakqmSweyATKCpRaE4qEMyYaLihZLV6zE5SWnNGINaVBPytIiIgbptsKMfAjWhow8mjj7Qd4wBe-qGSFf-bYWxGGKHkbpoflnT06XZ9MZ6ExLNQmv6Pp2SI2f6hGd_d0pebm-e53fF8nFxP79eFlZwPhYtSJgZnjOss7URrkVX26a2xgpRKxCgeNUoJhQ6FE2mlJxVvAMhTd1KKabkYv93E4fPLaZRr4dtzFFJcwDJQTZMZYrtKRuHlCI6vYn-w8RvDUzvdtNrHYze7aaZ0nm3rFztFcz1Xx6jTtZjsNj5iHbU3eD_l38AI0Vz-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2114214805</pqid></control><display><type>article</type><title>Green function and Martin kernel for higher-order fractional Laplacians in balls</title><source>Access via ScienceDirect (Elsevier)</source><creator>Abatangelo, Nicola ; Jarohs, Sven ; Saldaña, Alberto</creator><creatorcontrib>Abatangelo, Nicola ; Jarohs, Sven ; Saldaña, Alberto</creatorcontrib><description>We give the explicit formulas for the Green function and the Martin kernel for all integer and fractional powers of the Laplacian s>1 in balls. As consequences, we deduce interior and boundary regularity estimates for solutions to linear problems and positivity preserving properties. Our proofs rely on a characterization of suitable s-harmonic functions and on a differential recurrence equation.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2018.05.019</identifier><language>eng</language><publisher>Elmsford: Elsevier Ltd</publisher><subject>[formula omitted]-harmonic functions ; Boggio’s formula ; Boundary value problems ; Differential equations ; Green's functions ; Harmonic analysis ; Harmonic functions ; Laplace transforms ; Maximum principles ; Nonlinear systems</subject><ispartof>Nonlinear analysis, 2018-10, Vol.175, p.173-190</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Oct 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-b1419a2001cfc7a3fbef7c87cac337513152685035efe381cf54962d134a7b443</citedby><cites>FETCH-LOGICAL-c322t-b1419a2001cfc7a3fbef7c87cac337513152685035efe381cf54962d134a7b443</cites><orcidid>0000-0002-4134-0082</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.na.2018.05.019$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Abatangelo, Nicola</creatorcontrib><creatorcontrib>Jarohs, Sven</creatorcontrib><creatorcontrib>Saldaña, Alberto</creatorcontrib><title>Green function and Martin kernel for higher-order fractional Laplacians in balls</title><title>Nonlinear analysis</title><description>We give the explicit formulas for the Green function and the Martin kernel for all integer and fractional powers of the Laplacian s>1 in balls. As consequences, we deduce interior and boundary regularity estimates for solutions to linear problems and positivity preserving properties. Our proofs rely on a characterization of suitable s-harmonic functions and on a differential recurrence equation.</description><subject>[formula omitted]-harmonic functions</subject><subject>Boggio’s formula</subject><subject>Boundary value problems</subject><subject>Differential equations</subject><subject>Green's functions</subject><subject>Harmonic analysis</subject><subject>Harmonic functions</subject><subject>Laplace transforms</subject><subject>Maximum principles</subject><subject>Nonlinear systems</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kL1PwzAQRy0EEqWwM1piTvD5I0nZUAUFqQgGkNgsxzlTl-AUO0Xiv8elrEy3vHd6-hFyDqwEBtXlugym5AyakqmSweyATKCpRaE4qEMyYaLihZLV6zE5SWnNGINaVBPytIiIgbptsKMfAjWhow8mjj7Qd4wBe-qGSFf-bYWxGGKHkbpoflnT06XZ9MZ6ExLNQmv6Pp2SI2f6hGd_d0pebm-e53fF8nFxP79eFlZwPhYtSJgZnjOss7URrkVX26a2xgpRKxCgeNUoJhQ6FE2mlJxVvAMhTd1KKabkYv93E4fPLaZRr4dtzFFJcwDJQTZMZYrtKRuHlCI6vYn-w8RvDUzvdtNrHYze7aaZ0nm3rFztFcz1Xx6jTtZjsNj5iHbU3eD_l38AI0Vz-w</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Abatangelo, Nicola</creator><creator>Jarohs, Sven</creator><creator>Saldaña, Alberto</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4134-0082</orcidid></search><sort><creationdate>201810</creationdate><title>Green function and Martin kernel for higher-order fractional Laplacians in balls</title><author>Abatangelo, Nicola ; Jarohs, Sven ; Saldaña, Alberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-b1419a2001cfc7a3fbef7c87cac337513152685035efe381cf54962d134a7b443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>[formula omitted]-harmonic functions</topic><topic>Boggio’s formula</topic><topic>Boundary value problems</topic><topic>Differential equations</topic><topic>Green's functions</topic><topic>Harmonic analysis</topic><topic>Harmonic functions</topic><topic>Laplace transforms</topic><topic>Maximum principles</topic><topic>Nonlinear systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abatangelo, Nicola</creatorcontrib><creatorcontrib>Jarohs, Sven</creatorcontrib><creatorcontrib>Saldaña, Alberto</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abatangelo, Nicola</au><au>Jarohs, Sven</au><au>Saldaña, Alberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Green function and Martin kernel for higher-order fractional Laplacians in balls</atitle><jtitle>Nonlinear analysis</jtitle><date>2018-10</date><risdate>2018</risdate><volume>175</volume><spage>173</spage><epage>190</epage><pages>173-190</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><abstract>We give the explicit formulas for the Green function and the Martin kernel for all integer and fractional powers of the Laplacian s>1 in balls. As consequences, we deduce interior and boundary regularity estimates for solutions to linear problems and positivity preserving properties. Our proofs rely on a characterization of suitable s-harmonic functions and on a differential recurrence equation.</abstract><cop>Elmsford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2018.05.019</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0002-4134-0082</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-546X |
ispartof | Nonlinear analysis, 2018-10, Vol.175, p.173-190 |
issn | 0362-546X 1873-5215 |
language | eng |
recordid | cdi_proquest_journals_2114214805 |
source | Access via ScienceDirect (Elsevier) |
subjects | [formula omitted]-harmonic functions Boggio’s formula Boundary value problems Differential equations Green's functions Harmonic analysis Harmonic functions Laplace transforms Maximum principles Nonlinear systems |
title | Green function and Martin kernel for higher-order fractional Laplacians in balls |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A48%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Green%20function%20and%20Martin%20kernel%20for%20higher-order%20fractional%20Laplacians%20in%20balls&rft.jtitle=Nonlinear%20analysis&rft.au=Abatangelo,%20Nicola&rft.date=2018-10&rft.volume=175&rft.spage=173&rft.epage=190&rft.pages=173-190&rft.issn=0362-546X&rft.eissn=1873-5215&rft_id=info:doi/10.1016/j.na.2018.05.019&rft_dat=%3Cproquest_cross%3E2114214805%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2114214805&rft_id=info:pmid/&rft_els_id=S0362546X18301500&rfr_iscdi=true |