Green function and Martin kernel for higher-order fractional Laplacians in balls
We give the explicit formulas for the Green function and the Martin kernel for all integer and fractional powers of the Laplacian s>1 in balls. As consequences, we deduce interior and boundary regularity estimates for solutions to linear problems and positivity preserving properties. Our proofs r...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2018-10, Vol.175, p.173-190 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give the explicit formulas for the Green function and the Martin kernel for all integer and fractional powers of the Laplacian s>1 in balls. As consequences, we deduce interior and boundary regularity estimates for solutions to linear problems and positivity preserving properties. Our proofs rely on a characterization of suitable s-harmonic functions and on a differential recurrence equation. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2018.05.019 |