A new higher-order locking-free beam element based on the absolute nodal coordinate formulation

The beam elements based on the absolute nodal coordinate formulation are widely used in large deformation and large rotation problems. Some of them lead to shear and Poisson locking problems when the continuum mechanics method is employed to deduce the generalized elastic force of the element. To ci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2018-10, Vol.232 (19), p.3410-3423
Hauptverfasser: Yu, Haidong, Zhao, Chunzhang, Zheng, Bin, Wang, Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The beam elements based on the absolute nodal coordinate formulation are widely used in large deformation and large rotation problems. Some of them lead to shear and Poisson locking problems when the continuum mechanics method is employed to deduce the generalized elastic force of the element. To circumvent these locking problems, a new higher-order beam element is proposed that may capture the warping and non-uniform stretching distribution of the cross-section by introducing the trapezoidal cross-section deformation mode and increasing the order of interpolation polynomials in transverse direction. The curvature vectors are chosen as the nodal coordinates of the new element that improve the continuity condition at the element interface. Static and dynamic analyses are conducted to investigate the performance of the new element. Poisson locking phenomena may be eliminated effectively for the new element even when Poisson’s ratio is greater than zero. Meanwhile, the distortion deformation of the cross-section may be described directly. The new element has a better convergence performance compared with the spatial absolute nodal coordinate formulation beam element for that shear locking issue is eliminated. The results also show that the new element fulfills energy conservation and may be applied to the dynamics of both straight and initial curved structures with large deformation.
ISSN:0954-4062
2041-2983
DOI:10.1177/0954406217736550