Antibiofouling hollow-fiber membranes for dye rejection by embedding chitosan and silver-loaded chitosan nanoparticles

The removal of toxic dyes from the wastewater and industrial effluents is a major environmental challenge. Various techniques have been employed for the removal of dyes, including the application of nano-sized adsorbents, nanocomposite membranes and photodegradation. Membrane filtration is an altern...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental chemistry letters 2019-03, Vol.17 (1), p.581-587
Hauptverfasser: Kolangare, Irfana Moideen, Isloor, Arun Mohan, Karim, Zulhairun Abdul, Kulal, Ananda, Ismail, Ahmad Fauzi, Inamuddin, Asiri, Abdullah Mohamed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The removal of toxic dyes from the wastewater and industrial effluents is a major environmental challenge. Various techniques have been employed for the removal of dyes, including the application of nano-sized adsorbents, nanocomposite membranes and photodegradation. Membrane filtration is an alterntive but suffers from drawbacks such as fouling. Here we present a simple approach  for the development of antibiofouling membranes based on chitosan. The application of chitosan-based nanoparticles as additives for wastewater treatment is poorly explored. The chitosan and silver-loaded chitosan nanoparticles were synthesized by ionic gelation method and incorporated to fabricate hollow-fiber membranes by dry–wet spinning technique. The prepared membranes were characterized by morphological study, permeability test, antibiofouling study and dye rejection study. The nanocomposite hollow-fiber membranes displayed superior performance than their pristine form. The incorporation of 0.30 weight percent of the chitosan and silver-loaded chitosan nanoparticles into the hollow-fiber membranes enhanced the antifouling property with flux recovery ratio of 81.21 and 86.13%, respectively. The dye rejection results showed maximum rejection of 89.27 and 86.04% for Reactive Black 5 and Reactive Orange 16, respectively. Hence, it can be concluded that hollow-fiber membranes with silver-loaded chitosan nanoparticles are pertinent in developing antibiofouling membranes for the treatment of industrial dye effluents.
ISSN:1610-3653
1610-3661
DOI:10.1007/s10311-018-0799-3