FREQUENCY DOMAIN MINIMUM DISTANCE INFERENCE FOR POSSIBLY NONINVERTIBLE AND NONCAUSAL ARMA MODELS

This article introduces frequency domain minimum distance procedures for performing inference in general, possibly non causal and/or noninvertible, autoregressive moving average (ARMA) models. We use information from higher order moments to achieve identification on the location of the roots of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2018-04, Vol.46 (2), p.555-579
Hauptverfasser: Velasco, Carlos, Lobato, Ignacio N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This article introduces frequency domain minimum distance procedures for performing inference in general, possibly non causal and/or noninvertible, autoregressive moving average (ARMA) models. We use information from higher order moments to achieve identification on the location of the roots of the AR and MA polynomials for non-Gaussian time series. We propose a minimum distance estimator that optimally combines the information contained in second, third, and fourth moments. Contrary to existing estimators, the proposed one is consistent under general assumptions, and may improve on the efficiency of estimators based on only second order moments. Our procedures are also applicable for processes for which either the third or the fourth order spectral density is the zero function.
ISSN:0090-5364
2168-8966
DOI:10.1214/17-AOS1560