Non-reciprocal interband Brillouin modulation
Non-reciprocal light propagation is essential to control optical crosstalk and back-scatter in photonic systems. However, realizing high-fidelity non-reciprocity in low-loss integrated photonic circuits remains challenging. Here, we experimentally demonstrate a form of non-local acousto-optic light...
Gespeichert in:
Veröffentlicht in: | Nature photonics 2018-10, Vol.12 (10), p.613-619 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 619 |
---|---|
container_issue | 10 |
container_start_page | 613 |
container_title | Nature photonics |
container_volume | 12 |
creator | Kittlaus, Eric A. Otterstrom, Nils T. Kharel, Prashanta Gertler, Shai Rakich, Peter T. |
description | Non-reciprocal light propagation is essential to control optical crosstalk and back-scatter in photonic systems. However, realizing high-fidelity non-reciprocity in low-loss integrated photonic circuits remains challenging. Here, we experimentally demonstrate a form of non-local acousto-optic light scattering to produce non-reciprocal single-sideband modulation and mode conversion in an integrated silicon photonic platform. In this system, a travelling-wave acoustic phonon driven by optical forces in a silicon waveguide spatiotemporally modulates light in a separate waveguide through linear interband Brillouin scattering. This process extends narrowband optomechanics-based schemes for non-reciprocity to travelling-wave physics, enabling large operation bandwidths of more than 125 GHz and up to 38 dB of non-reciprocal contrast between forward- and backward-propagating optical waves. The modulator operation wavelength is tunable over a 35-nm range by varying the optical drive wavelength. Such travelling-wave acousto-optic interactions provide a promising path toward the realization of broadband, low-loss isolators and circulators within integrated photonics.
Non-reciprocal single-sideband modulation and mode conversion are realized in a low-loss integrated silicon waveguide, enabling >125 GHz operation bandwidths and up to 38 dB of non-reciprocal contrast between forward- and backward-propagating waves. |
doi_str_mv | 10.1038/s41566-018-0254-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2113248835</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2113248835</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-f45c3717046edb6b0f875985926e5c02e45916724a87cd353e372795f380b0e13</originalsourceid><addsrcrecordid>eNp1kLtOxDAQRS0EEkvgA-giURv8fpSw4iWtoIHachwHeZW1Fzsp-Hu8CoKKaqaYc2fmAHCJ0TVGVN0UhrkQEGEFEeEM6iOwwpJpyJSmx7-94qfgrJQtQpxqQlYAvqQIs3dhn5OzYxvi5HNnY9_e5TCOaQ6x3aV-Hu0UUjwHJ4Mdi7_4qQ14f7h_Wz_Bzevj8_p2Ax1VZIID445KLBETvu9EhwYluVZcE-G5Q8QzrrGQhFklXU859VQSqflAFeqQx7QBV0tuvepz9mUy2zTnWFcagjEl9ZFKNQAvUy6nUrIfzD6Hnc1fBiNzsGIWK6ZaMQcrRleGLEyps_HD57_k_6FvPWditw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2113248835</pqid></control><display><type>article</type><title>Non-reciprocal interband Brillouin modulation</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>Kittlaus, Eric A. ; Otterstrom, Nils T. ; Kharel, Prashanta ; Gertler, Shai ; Rakich, Peter T.</creator><creatorcontrib>Kittlaus, Eric A. ; Otterstrom, Nils T. ; Kharel, Prashanta ; Gertler, Shai ; Rakich, Peter T.</creatorcontrib><description>Non-reciprocal light propagation is essential to control optical crosstalk and back-scatter in photonic systems. However, realizing high-fidelity non-reciprocity in low-loss integrated photonic circuits remains challenging. Here, we experimentally demonstrate a form of non-local acousto-optic light scattering to produce non-reciprocal single-sideband modulation and mode conversion in an integrated silicon photonic platform. In this system, a travelling-wave acoustic phonon driven by optical forces in a silicon waveguide spatiotemporally modulates light in a separate waveguide through linear interband Brillouin scattering. This process extends narrowband optomechanics-based schemes for non-reciprocity to travelling-wave physics, enabling large operation bandwidths of more than 125 GHz and up to 38 dB of non-reciprocal contrast between forward- and backward-propagating optical waves. The modulator operation wavelength is tunable over a 35-nm range by varying the optical drive wavelength. Such travelling-wave acousto-optic interactions provide a promising path toward the realization of broadband, low-loss isolators and circulators within integrated photonics.
Non-reciprocal single-sideband modulation and mode conversion are realized in a low-loss integrated silicon waveguide, enabling >125 GHz operation bandwidths and up to 38 dB of non-reciprocal contrast between forward- and backward-propagating waves.</description><identifier>ISSN: 1749-4885</identifier><identifier>EISSN: 1749-4893</identifier><identifier>DOI: 10.1038/s41566-018-0254-9</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 639/624/400/1021 ; 639/624/400/1113 ; Acousto-optics ; Applied and Technical Physics ; Back propagation ; Broadband ; Crosstalk ; Isolators ; Light scattering ; Narrowband ; Optics ; Opto-mechanics ; Photonics ; Physics ; Physics and Astronomy ; Quantum Physics ; Reciprocity ; Scatter propagation ; Silicon ; Single sideband transmission ; Wave physics ; Wave propagation ; Wavelength</subject><ispartof>Nature photonics, 2018-10, Vol.12 (10), p.613-619</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2018</rights><rights>Copyright Nature Publishing Group Oct 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-f45c3717046edb6b0f875985926e5c02e45916724a87cd353e372795f380b0e13</citedby><cites>FETCH-LOGICAL-c382t-f45c3717046edb6b0f875985926e5c02e45916724a87cd353e372795f380b0e13</cites><orcidid>0000-0002-4878-7805 ; 0000-0003-3656-7845 ; 0000-0002-3552-1549 ; 0000-0001-6132-6360</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41566-018-0254-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41566-018-0254-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Kittlaus, Eric A.</creatorcontrib><creatorcontrib>Otterstrom, Nils T.</creatorcontrib><creatorcontrib>Kharel, Prashanta</creatorcontrib><creatorcontrib>Gertler, Shai</creatorcontrib><creatorcontrib>Rakich, Peter T.</creatorcontrib><title>Non-reciprocal interband Brillouin modulation</title><title>Nature photonics</title><addtitle>Nature Photon</addtitle><description>Non-reciprocal light propagation is essential to control optical crosstalk and back-scatter in photonic systems. However, realizing high-fidelity non-reciprocity in low-loss integrated photonic circuits remains challenging. Here, we experimentally demonstrate a form of non-local acousto-optic light scattering to produce non-reciprocal single-sideband modulation and mode conversion in an integrated silicon photonic platform. In this system, a travelling-wave acoustic phonon driven by optical forces in a silicon waveguide spatiotemporally modulates light in a separate waveguide through linear interband Brillouin scattering. This process extends narrowband optomechanics-based schemes for non-reciprocity to travelling-wave physics, enabling large operation bandwidths of more than 125 GHz and up to 38 dB of non-reciprocal contrast between forward- and backward-propagating optical waves. The modulator operation wavelength is tunable over a 35-nm range by varying the optical drive wavelength. Such travelling-wave acousto-optic interactions provide a promising path toward the realization of broadband, low-loss isolators and circulators within integrated photonics.
Non-reciprocal single-sideband modulation and mode conversion are realized in a low-loss integrated silicon waveguide, enabling >125 GHz operation bandwidths and up to 38 dB of non-reciprocal contrast between forward- and backward-propagating waves.</description><subject>140/125</subject><subject>639/624/400/1021</subject><subject>639/624/400/1113</subject><subject>Acousto-optics</subject><subject>Applied and Technical Physics</subject><subject>Back propagation</subject><subject>Broadband</subject><subject>Crosstalk</subject><subject>Isolators</subject><subject>Light scattering</subject><subject>Narrowband</subject><subject>Optics</subject><subject>Opto-mechanics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Reciprocity</subject><subject>Scatter propagation</subject><subject>Silicon</subject><subject>Single sideband transmission</subject><subject>Wave physics</subject><subject>Wave propagation</subject><subject>Wavelength</subject><issn>1749-4885</issn><issn>1749-4893</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kLtOxDAQRS0EEkvgA-giURv8fpSw4iWtoIHachwHeZW1Fzsp-Hu8CoKKaqaYc2fmAHCJ0TVGVN0UhrkQEGEFEeEM6iOwwpJpyJSmx7-94qfgrJQtQpxqQlYAvqQIs3dhn5OzYxvi5HNnY9_e5TCOaQ6x3aV-Hu0UUjwHJ4Mdi7_4qQ14f7h_Wz_Bzevj8_p2Ax1VZIID445KLBETvu9EhwYluVZcE-G5Q8QzrrGQhFklXU859VQSqflAFeqQx7QBV0tuvepz9mUy2zTnWFcagjEl9ZFKNQAvUy6nUrIfzD6Hnc1fBiNzsGIWK6ZaMQcrRleGLEyps_HD57_k_6FvPWditw</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Kittlaus, Eric A.</creator><creator>Otterstrom, Nils T.</creator><creator>Kharel, Prashanta</creator><creator>Gertler, Shai</creator><creator>Rakich, Peter T.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>LK8</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-4878-7805</orcidid><orcidid>https://orcid.org/0000-0003-3656-7845</orcidid><orcidid>https://orcid.org/0000-0002-3552-1549</orcidid><orcidid>https://orcid.org/0000-0001-6132-6360</orcidid></search><sort><creationdate>20181001</creationdate><title>Non-reciprocal interband Brillouin modulation</title><author>Kittlaus, Eric A. ; Otterstrom, Nils T. ; Kharel, Prashanta ; Gertler, Shai ; Rakich, Peter T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-f45c3717046edb6b0f875985926e5c02e45916724a87cd353e372795f380b0e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>140/125</topic><topic>639/624/400/1021</topic><topic>639/624/400/1113</topic><topic>Acousto-optics</topic><topic>Applied and Technical Physics</topic><topic>Back propagation</topic><topic>Broadband</topic><topic>Crosstalk</topic><topic>Isolators</topic><topic>Light scattering</topic><topic>Narrowband</topic><topic>Optics</topic><topic>Opto-mechanics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Reciprocity</topic><topic>Scatter propagation</topic><topic>Silicon</topic><topic>Single sideband transmission</topic><topic>Wave physics</topic><topic>Wave propagation</topic><topic>Wavelength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kittlaus, Eric A.</creatorcontrib><creatorcontrib>Otterstrom, Nils T.</creatorcontrib><creatorcontrib>Kharel, Prashanta</creatorcontrib><creatorcontrib>Gertler, Shai</creatorcontrib><creatorcontrib>Rakich, Peter T.</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature photonics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kittlaus, Eric A.</au><au>Otterstrom, Nils T.</au><au>Kharel, Prashanta</au><au>Gertler, Shai</au><au>Rakich, Peter T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-reciprocal interband Brillouin modulation</atitle><jtitle>Nature photonics</jtitle><stitle>Nature Photon</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>12</volume><issue>10</issue><spage>613</spage><epage>619</epage><pages>613-619</pages><issn>1749-4885</issn><eissn>1749-4893</eissn><abstract>Non-reciprocal light propagation is essential to control optical crosstalk and back-scatter in photonic systems. However, realizing high-fidelity non-reciprocity in low-loss integrated photonic circuits remains challenging. Here, we experimentally demonstrate a form of non-local acousto-optic light scattering to produce non-reciprocal single-sideband modulation and mode conversion in an integrated silicon photonic platform. In this system, a travelling-wave acoustic phonon driven by optical forces in a silicon waveguide spatiotemporally modulates light in a separate waveguide through linear interband Brillouin scattering. This process extends narrowband optomechanics-based schemes for non-reciprocity to travelling-wave physics, enabling large operation bandwidths of more than 125 GHz and up to 38 dB of non-reciprocal contrast between forward- and backward-propagating optical waves. The modulator operation wavelength is tunable over a 35-nm range by varying the optical drive wavelength. Such travelling-wave acousto-optic interactions provide a promising path toward the realization of broadband, low-loss isolators and circulators within integrated photonics.
Non-reciprocal single-sideband modulation and mode conversion are realized in a low-loss integrated silicon waveguide, enabling >125 GHz operation bandwidths and up to 38 dB of non-reciprocal contrast between forward- and backward-propagating waves.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41566-018-0254-9</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4878-7805</orcidid><orcidid>https://orcid.org/0000-0003-3656-7845</orcidid><orcidid>https://orcid.org/0000-0002-3552-1549</orcidid><orcidid>https://orcid.org/0000-0001-6132-6360</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1749-4885 |
ispartof | Nature photonics, 2018-10, Vol.12 (10), p.613-619 |
issn | 1749-4885 1749-4893 |
language | eng |
recordid | cdi_proquest_journals_2113248835 |
source | Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 140/125 639/624/400/1021 639/624/400/1113 Acousto-optics Applied and Technical Physics Back propagation Broadband Crosstalk Isolators Light scattering Narrowband Optics Opto-mechanics Photonics Physics Physics and Astronomy Quantum Physics Reciprocity Scatter propagation Silicon Single sideband transmission Wave physics Wave propagation Wavelength |
title | Non-reciprocal interband Brillouin modulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T14%3A56%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-reciprocal%20interband%20Brillouin%20modulation&rft.jtitle=Nature%20photonics&rft.au=Kittlaus,%20Eric%20A.&rft.date=2018-10-01&rft.volume=12&rft.issue=10&rft.spage=613&rft.epage=619&rft.pages=613-619&rft.issn=1749-4885&rft.eissn=1749-4893&rft_id=info:doi/10.1038/s41566-018-0254-9&rft_dat=%3Cproquest_cross%3E2113248835%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2113248835&rft_id=info:pmid/&rfr_iscdi=true |