Non-reciprocal interband Brillouin modulation
Non-reciprocal light propagation is essential to control optical crosstalk and back-scatter in photonic systems. However, realizing high-fidelity non-reciprocity in low-loss integrated photonic circuits remains challenging. Here, we experimentally demonstrate a form of non-local acousto-optic light...
Gespeichert in:
Veröffentlicht in: | Nature photonics 2018-10, Vol.12 (10), p.613-619 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Non-reciprocal light propagation is essential to control optical crosstalk and back-scatter in photonic systems. However, realizing high-fidelity non-reciprocity in low-loss integrated photonic circuits remains challenging. Here, we experimentally demonstrate a form of non-local acousto-optic light scattering to produce non-reciprocal single-sideband modulation and mode conversion in an integrated silicon photonic platform. In this system, a travelling-wave acoustic phonon driven by optical forces in a silicon waveguide spatiotemporally modulates light in a separate waveguide through linear interband Brillouin scattering. This process extends narrowband optomechanics-based schemes for non-reciprocity to travelling-wave physics, enabling large operation bandwidths of more than 125 GHz and up to 38 dB of non-reciprocal contrast between forward- and backward-propagating optical waves. The modulator operation wavelength is tunable over a 35-nm range by varying the optical drive wavelength. Such travelling-wave acousto-optic interactions provide a promising path toward the realization of broadband, low-loss isolators and circulators within integrated photonics.
Non-reciprocal single-sideband modulation and mode conversion are realized in a low-loss integrated silicon waveguide, enabling >125 GHz operation bandwidths and up to 38 dB of non-reciprocal contrast between forward- and backward-propagating waves. |
---|---|
ISSN: | 1749-4885 1749-4893 |
DOI: | 10.1038/s41566-018-0254-9 |