Deep learning for smart agriculture: Concepts, tools, applications, and opportunities
In recent years, Deep Learning (DL), such as the algorithms of Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN) and Generative Adversarial Networks (GAN), has been widely studied and applied in various fields including agriculture. Researchers in the fields of agriculture often u...
Gespeichert in:
Veröffentlicht in: | International journal of agricultural and biological engineering 2018-07, Vol.11 (4), p.21-28 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28 |
---|---|
container_issue | 4 |
container_start_page | 21 |
container_title | International journal of agricultural and biological engineering |
container_volume | 11 |
creator | Zhu, Nanyang Liu, Xu Liu, Ziqian Hu, Kai Wang, Yingkuan Tan, Jinglu Huang, Min Zhu, Qibing Ji, Xunsheng Jiang, Yongnian Guo, Ya |
description | In recent years, Deep Learning (DL), such as the algorithms of Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN) and Generative Adversarial Networks (GAN), has been widely studied and applied in various fields including agriculture. Researchers in the fields of agriculture often use software frameworks without sufficiently examining the ideas and mechanisms of a technique. This article provides a concise summary of major DL algorithms, including concepts, limitations, implementation, training processes, and example codes, to help researchers in agriculture to gain a holistic picture of major DL techniques quickly. Research on DL applications in agriculture is summarized and analyzed, and future opportunities are discussed in this paper, which is expected to help researchers in agriculture to better understand DL algorithms and learn major DL techniques quickly, and further to facilitate data analysis, enhance related research in agriculture, and thus promote DL applications effectively. |
doi_str_mv | 10.25165/j.ijabe.20181104.4475 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2113234695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2113234695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c213t-a97c015c0328af4677930f5be66e1c2225770812d12b226204a8b22cece9dae83</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EEqXwF1AkrjTY60cSbqg8pUpc6Nly3U3lKMTGdg78e9IWOM2MNNrVfIRcM1qCZEredaXrzAZLoKxmjIpSiEqekBlruFgoLuH03wtxTi5S6ihVouZyRtaPiKHo0cTBDbui9bFInybmwuyis2Ofx4j3xdIPFkNOt0X2vp_EhNA7a7Lzwz4N28KH4GMeB5cdpkty1po-4dWvzsn6-elj-bpYvb-8LR9WCwuM54VpKkuZtJRDbVqhqqrhtJUbVAqZBQBZVbRmsGWwAVBAhaknY9FiszVY8zm5Od4N0X-NmLLu_BiH6aUGxjhwoRo5tdSxZaNPKWKrQ3TTyG_NqD4g1J0-INR_CPUeIf8B6XtmEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2113234695</pqid></control><display><type>article</type><title>Deep learning for smart agriculture: Concepts, tools, applications, and opportunities</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Zhu, Nanyang ; Liu, Xu ; Liu, Ziqian ; Hu, Kai ; Wang, Yingkuan ; Tan, Jinglu ; Huang, Min ; Zhu, Qibing ; Ji, Xunsheng ; Jiang, Yongnian ; Guo, Ya</creator><creatorcontrib>Zhu, Nanyang ; Liu, Xu ; Liu, Ziqian ; Hu, Kai ; Wang, Yingkuan ; Tan, Jinglu ; Huang, Min ; Zhu, Qibing ; Ji, Xunsheng ; Jiang, Yongnian ; Guo, Ya ; 2. School of Internet of Things, Jiangnan University, Wuxi 214122, China ; 4. Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA ; 5. Jiangsu Zhongnong IoT Technology Co., LTD, Yixing 214200, China ; 3. Chinese Academy of Agricultural Engineering, Beijing 100125, China ; 1. Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi 214122, China</creatorcontrib><description>In recent years, Deep Learning (DL), such as the algorithms of Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN) and Generative Adversarial Networks (GAN), has been widely studied and applied in various fields including agriculture. Researchers in the fields of agriculture often use software frameworks without sufficiently examining the ideas and mechanisms of a technique. This article provides a concise summary of major DL algorithms, including concepts, limitations, implementation, training processes, and example codes, to help researchers in agriculture to gain a holistic picture of major DL techniques quickly. Research on DL applications in agriculture is summarized and analyzed, and future opportunities are discussed in this paper, which is expected to help researchers in agriculture to better understand DL algorithms and learn major DL techniques quickly, and further to facilitate data analysis, enhance related research in agriculture, and thus promote DL applications effectively.</description><identifier>ISSN: 1934-6344</identifier><identifier>EISSN: 1934-6352</identifier><identifier>DOI: 10.25165/j.ijabe.20181104.4475</identifier><language>eng</language><publisher>Beijing: International Journal of Agricultural and Biological Engineering (IJABE)</publisher><subject>Agricultural practices ; Agricultural research ; Agriculture ; Algorithms ; Artificial neural networks ; Back propagation ; Codes ; Computers ; Data analysis ; Data processing ; Deep learning ; Digital agriculture ; Information science ; International conferences ; Neural networks ; Neurons ; Pattern recognition ; Recurrent neural networks ; Remote sensing ; Researchers ; Science ; Scientometrics ; Software</subject><ispartof>International journal of agricultural and biological engineering, 2018-07, Vol.11 (4), p.21-28</ispartof><rights>2018. This work is published under https://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c213t-a97c015c0328af4677930f5be66e1c2225770812d12b226204a8b22cece9dae83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Zhu, Nanyang</creatorcontrib><creatorcontrib>Liu, Xu</creatorcontrib><creatorcontrib>Liu, Ziqian</creatorcontrib><creatorcontrib>Hu, Kai</creatorcontrib><creatorcontrib>Wang, Yingkuan</creatorcontrib><creatorcontrib>Tan, Jinglu</creatorcontrib><creatorcontrib>Huang, Min</creatorcontrib><creatorcontrib>Zhu, Qibing</creatorcontrib><creatorcontrib>Ji, Xunsheng</creatorcontrib><creatorcontrib>Jiang, Yongnian</creatorcontrib><creatorcontrib>Guo, Ya</creatorcontrib><creatorcontrib>2. School of Internet of Things, Jiangnan University, Wuxi 214122, China</creatorcontrib><creatorcontrib>4. Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA</creatorcontrib><creatorcontrib>5. Jiangsu Zhongnong IoT Technology Co., LTD, Yixing 214200, China</creatorcontrib><creatorcontrib>3. Chinese Academy of Agricultural Engineering, Beijing 100125, China</creatorcontrib><creatorcontrib>1. Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi 214122, China</creatorcontrib><title>Deep learning for smart agriculture: Concepts, tools, applications, and opportunities</title><title>International journal of agricultural and biological engineering</title><description>In recent years, Deep Learning (DL), such as the algorithms of Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN) and Generative Adversarial Networks (GAN), has been widely studied and applied in various fields including agriculture. Researchers in the fields of agriculture often use software frameworks without sufficiently examining the ideas and mechanisms of a technique. This article provides a concise summary of major DL algorithms, including concepts, limitations, implementation, training processes, and example codes, to help researchers in agriculture to gain a holistic picture of major DL techniques quickly. Research on DL applications in agriculture is summarized and analyzed, and future opportunities are discussed in this paper, which is expected to help researchers in agriculture to better understand DL algorithms and learn major DL techniques quickly, and further to facilitate data analysis, enhance related research in agriculture, and thus promote DL applications effectively.</description><subject>Agricultural practices</subject><subject>Agricultural research</subject><subject>Agriculture</subject><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>Codes</subject><subject>Computers</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Deep learning</subject><subject>Digital agriculture</subject><subject>Information science</subject><subject>International conferences</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Pattern recognition</subject><subject>Recurrent neural networks</subject><subject>Remote sensing</subject><subject>Researchers</subject><subject>Science</subject><subject>Scientometrics</subject><subject>Software</subject><issn>1934-6344</issn><issn>1934-6352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNo9kEtPwzAQhC0EEqXwF1AkrjTY60cSbqg8pUpc6Nly3U3lKMTGdg78e9IWOM2MNNrVfIRcM1qCZEredaXrzAZLoKxmjIpSiEqekBlruFgoLuH03wtxTi5S6ihVouZyRtaPiKHo0cTBDbui9bFInybmwuyis2Ofx4j3xdIPFkNOt0X2vp_EhNA7a7Lzwz4N28KH4GMeB5cdpkty1po-4dWvzsn6-elj-bpYvb-8LR9WCwuM54VpKkuZtJRDbVqhqqrhtJUbVAqZBQBZVbRmsGWwAVBAhaknY9FiszVY8zm5Od4N0X-NmLLu_BiH6aUGxjhwoRo5tdSxZaNPKWKrQ3TTyG_NqD4g1J0-INR_CPUeIf8B6XtmEw</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Zhu, Nanyang</creator><creator>Liu, Xu</creator><creator>Liu, Ziqian</creator><creator>Hu, Kai</creator><creator>Wang, Yingkuan</creator><creator>Tan, Jinglu</creator><creator>Huang, Min</creator><creator>Zhu, Qibing</creator><creator>Ji, Xunsheng</creator><creator>Jiang, Yongnian</creator><creator>Guo, Ya</creator><general>International Journal of Agricultural and Biological Engineering (IJABE)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BVBZV</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>RC3</scope><scope>SOI</scope></search><sort><creationdate>20180701</creationdate><title>Deep learning for smart agriculture: Concepts, tools, applications, and opportunities</title><author>Zhu, Nanyang ; Liu, Xu ; Liu, Ziqian ; Hu, Kai ; Wang, Yingkuan ; Tan, Jinglu ; Huang, Min ; Zhu, Qibing ; Ji, Xunsheng ; Jiang, Yongnian ; Guo, Ya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c213t-a97c015c0328af4677930f5be66e1c2225770812d12b226204a8b22cece9dae83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agricultural practices</topic><topic>Agricultural research</topic><topic>Agriculture</topic><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>Codes</topic><topic>Computers</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Deep learning</topic><topic>Digital agriculture</topic><topic>Information science</topic><topic>International conferences</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Pattern recognition</topic><topic>Recurrent neural networks</topic><topic>Remote sensing</topic><topic>Researchers</topic><topic>Science</topic><topic>Scientometrics</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Nanyang</creatorcontrib><creatorcontrib>Liu, Xu</creatorcontrib><creatorcontrib>Liu, Ziqian</creatorcontrib><creatorcontrib>Hu, Kai</creatorcontrib><creatorcontrib>Wang, Yingkuan</creatorcontrib><creatorcontrib>Tan, Jinglu</creatorcontrib><creatorcontrib>Huang, Min</creatorcontrib><creatorcontrib>Zhu, Qibing</creatorcontrib><creatorcontrib>Ji, Xunsheng</creatorcontrib><creatorcontrib>Jiang, Yongnian</creatorcontrib><creatorcontrib>Guo, Ya</creatorcontrib><creatorcontrib>2. School of Internet of Things, Jiangnan University, Wuxi 214122, China</creatorcontrib><creatorcontrib>4. Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA</creatorcontrib><creatorcontrib>5. Jiangsu Zhongnong IoT Technology Co., LTD, Yixing 214200, China</creatorcontrib><creatorcontrib>3. Chinese Academy of Agricultural Engineering, Beijing 100125, China</creatorcontrib><creatorcontrib>1. Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi 214122, China</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>East & South Asia Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>International journal of agricultural and biological engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Nanyang</au><au>Liu, Xu</au><au>Liu, Ziqian</au><au>Hu, Kai</au><au>Wang, Yingkuan</au><au>Tan, Jinglu</au><au>Huang, Min</au><au>Zhu, Qibing</au><au>Ji, Xunsheng</au><au>Jiang, Yongnian</au><au>Guo, Ya</au><aucorp>2. School of Internet of Things, Jiangnan University, Wuxi 214122, China</aucorp><aucorp>4. Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA</aucorp><aucorp>5. Jiangsu Zhongnong IoT Technology Co., LTD, Yixing 214200, China</aucorp><aucorp>3. Chinese Academy of Agricultural Engineering, Beijing 100125, China</aucorp><aucorp>1. Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi 214122, China</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep learning for smart agriculture: Concepts, tools, applications, and opportunities</atitle><jtitle>International journal of agricultural and biological engineering</jtitle><date>2018-07-01</date><risdate>2018</risdate><volume>11</volume><issue>4</issue><spage>21</spage><epage>28</epage><pages>21-28</pages><issn>1934-6344</issn><eissn>1934-6352</eissn><abstract>In recent years, Deep Learning (DL), such as the algorithms of Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN) and Generative Adversarial Networks (GAN), has been widely studied and applied in various fields including agriculture. Researchers in the fields of agriculture often use software frameworks without sufficiently examining the ideas and mechanisms of a technique. This article provides a concise summary of major DL algorithms, including concepts, limitations, implementation, training processes, and example codes, to help researchers in agriculture to gain a holistic picture of major DL techniques quickly. Research on DL applications in agriculture is summarized and analyzed, and future opportunities are discussed in this paper, which is expected to help researchers in agriculture to better understand DL algorithms and learn major DL techniques quickly, and further to facilitate data analysis, enhance related research in agriculture, and thus promote DL applications effectively.</abstract><cop>Beijing</cop><pub>International Journal of Agricultural and Biological Engineering (IJABE)</pub><doi>10.25165/j.ijabe.20181104.4475</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1934-6344 |
ispartof | International journal of agricultural and biological engineering, 2018-07, Vol.11 (4), p.21-28 |
issn | 1934-6344 1934-6352 |
language | eng |
recordid | cdi_proquest_journals_2113234695 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Agricultural practices Agricultural research Agriculture Algorithms Artificial neural networks Back propagation Codes Computers Data analysis Data processing Deep learning Digital agriculture Information science International conferences Neural networks Neurons Pattern recognition Recurrent neural networks Remote sensing Researchers Science Scientometrics Software |
title | Deep learning for smart agriculture: Concepts, tools, applications, and opportunities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T22%3A26%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20learning%20for%20smart%20agriculture:%20Concepts,%20tools,%20applications,%20and%20opportunities&rft.jtitle=International%20journal%20of%20agricultural%20and%20biological%20engineering&rft.au=Zhu,%20Nanyang&rft.aucorp=2.%20School%20of%20Internet%20of%20Things,%20Jiangnan%20University,%20Wuxi%20214122,%20China&rft.date=2018-07-01&rft.volume=11&rft.issue=4&rft.spage=21&rft.epage=28&rft.pages=21-28&rft.issn=1934-6344&rft.eissn=1934-6352&rft_id=info:doi/10.25165/j.ijabe.20181104.4475&rft_dat=%3Cproquest_cross%3E2113234695%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2113234695&rft_id=info:pmid/&rfr_iscdi=true |