Deep learning for smart agriculture: Concepts, tools, applications, and opportunities
In recent years, Deep Learning (DL), such as the algorithms of Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN) and Generative Adversarial Networks (GAN), has been widely studied and applied in various fields including agriculture. Researchers in the fields of agriculture often u...
Gespeichert in:
Veröffentlicht in: | International journal of agricultural and biological engineering 2018-07, Vol.11 (4), p.21-28 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In recent years, Deep Learning (DL), such as the algorithms of Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN) and Generative Adversarial Networks (GAN), has been widely studied and applied in various fields including agriculture. Researchers in the fields of agriculture often use software frameworks without sufficiently examining the ideas and mechanisms of a technique. This article provides a concise summary of major DL algorithms, including concepts, limitations, implementation, training processes, and example codes, to help researchers in agriculture to gain a holistic picture of major DL techniques quickly. Research on DL applications in agriculture is summarized and analyzed, and future opportunities are discussed in this paper, which is expected to help researchers in agriculture to better understand DL algorithms and learn major DL techniques quickly, and further to facilitate data analysis, enhance related research in agriculture, and thus promote DL applications effectively. |
---|---|
ISSN: | 1934-6344 1934-6352 |
DOI: | 10.25165/j.ijabe.20181104.4475 |