Efficient room-temperature phosphorescence based on a pure organic sulfur-containing heterocycle: folding-induced spin–orbit coupling enhancement
The development of metal-free room-temperature phosphorescence (RTP) emitters is a very challenging task, due to one of the most critical issues in pure organic systems: very weak spin–orbit coupling (SOC). Herein, we report a novel mechanism of folding-induced SOC enhancement, which is mainly respo...
Gespeichert in:
Veröffentlicht in: | Materials chemistry frontiers 2018-01, Vol.2 (10), p.1853-1858 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The development of metal-free room-temperature phosphorescence (RTP) emitters is a very challenging task, due to one of the most critical issues in pure organic systems: very weak spin–orbit coupling (SOC). Herein, we report a novel mechanism of folding-induced SOC enhancement, which is mainly responsible for an efficient RTP of thianthrene (TA), a pure organic sulfur-containing heterocycle. In a rigid environment, SOC is significantly triggered by the folding along the S⋯S axis, arising from the orthogonality between the non-bonding p
z
-orbitals of the S atoms and the π-orbitals of the phenyl rings that results in a
1
(n,σ*) transition configuration at the bend in essence. A single-molecule doped poly(methyl methacrylate) (PMMA) film of TA exhibits strong RTP emission once deoxygenated, which enables highly-sensitive oxygen-sensing. This work provides a novel strategy to design high-efficiency pure organic RTP materials using a folding-induced SOC enhancement mechanism. |
---|---|
ISSN: | 2052-1537 2052-1537 |
DOI: | 10.1039/C8QM00320C |