Short-Term Water Demand Forecast Based on Deep Learning Method

AbstractShort-time water demand forecasting is essential for optimal control in a water distribution system (WDS). Current methods (e.g., time-series models and conventional artificial neural networks) have limited power in practice due to the nonlinear nature of changes in water demand. In particul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of water resources planning and management 2018-12, Vol.144 (12)
Hauptverfasser: Guo, Guancheng, Liu, Shuming, Wu, Yipeng, Li, Junyu, Zhou, Ren, Zhu, Xiaoyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Journal of water resources planning and management
container_volume 144
creator Guo, Guancheng
Liu, Shuming
Wu, Yipeng
Li, Junyu
Zhou, Ren
Zhu, Xiaoyun
description AbstractShort-time water demand forecasting is essential for optimal control in a water distribution system (WDS). Current methods (e.g., time-series models and conventional artificial neural networks) have limited power in practice due to the nonlinear nature of changes in water demand. In particular, 15-min time-step forecasting may not be accurate when using conventional models. To tackle this problem, this paper investigates the potential of deep learning in short-term water demand forecasting, developing a gated recurrent unit network (GRUN) model to forecast water demand 15 min and 24 h into the future with a 15-min time step. The performance of GRUN was compared with a conventional artificial neural network (ANN) model and seasonal autoregressive integrated moving average (SARIMA) model. A correction module was used to reduce the cumulative error. The results show that the deep learning method improves the performance of water demand prediction. The correction module enhances the performance of ANN and GRUN models. In general, deep neural network models like GRUN outperform the ANN and SARIMA models for both 15-min and 24-h forecasts. These findings can provide more flexible and effective solutions for water demand forecasting.
doi_str_mv 10.1061/(ASCE)WR.1943-5452.0000992
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2112691579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2112691579</sourcerecordid><originalsourceid>FETCH-LOGICAL-a385t-579934407d4eca8b4cbbbf584a5a91ca8dac03fb7da3f62bb9d30331711f1e083</originalsourceid><addsrcrecordid>eNp1kE1PAjEQhhujiYj-h0YveljsbNvdrQcTRFATjAlgODbttisQ2UK7HPz3dgPqyblMMvN-JA9Cl0B6QDK4ve5PB8Ob-aQHgtGEM572SBwh0iPU-b0dow7JKU0EE9kpOgthFTU54WkH3U8XzjfJzPo1nqvGevxo16o2eOS8LVVo8IMK1mBXx4fd4LFVvl7WH_jVNgtnztFJpT6DvTjsLnofDWeD52T89vQy6I8TRQveJDwXgjJGcsNiaKFZqbWueMEUVwLixaiS0ErnRtEqS7UWhhJKIQeowJKCdtHVPnfj3XZnQyNXbufrWClTgDQTECui6m6vKr0LwdtKbvxyrfyXBCJbXlK2vOR8Ils2smUjD7yiOdubVSjtX_yP83_jN1Snbdo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2112691579</pqid></control><display><type>article</type><title>Short-Term Water Demand Forecast Based on Deep Learning Method</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Guo, Guancheng ; Liu, Shuming ; Wu, Yipeng ; Li, Junyu ; Zhou, Ren ; Zhu, Xiaoyun</creator><creatorcontrib>Guo, Guancheng ; Liu, Shuming ; Wu, Yipeng ; Li, Junyu ; Zhou, Ren ; Zhu, Xiaoyun</creatorcontrib><description>AbstractShort-time water demand forecasting is essential for optimal control in a water distribution system (WDS). Current methods (e.g., time-series models and conventional artificial neural networks) have limited power in practice due to the nonlinear nature of changes in water demand. In particular, 15-min time-step forecasting may not be accurate when using conventional models. To tackle this problem, this paper investigates the potential of deep learning in short-term water demand forecasting, developing a gated recurrent unit network (GRUN) model to forecast water demand 15 min and 24 h into the future with a 15-min time step. The performance of GRUN was compared with a conventional artificial neural network (ANN) model and seasonal autoregressive integrated moving average (SARIMA) model. A correction module was used to reduce the cumulative error. The results show that the deep learning method improves the performance of water demand prediction. The correction module enhances the performance of ANN and GRUN models. In general, deep neural network models like GRUN outperform the ANN and SARIMA models for both 15-min and 24-h forecasts. These findings can provide more flexible and effective solutions for water demand forecasting.</description><identifier>ISSN: 0733-9496</identifier><identifier>EISSN: 1943-5452</identifier><identifier>DOI: 10.1061/(ASCE)WR.1943-5452.0000992</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Artificial neural networks ; Autoregressive models ; Current distribution ; Deep learning ; Demand ; Economic forecasting ; Error correction ; Forecasting ; Learning ; Learning theory ; Lifting tackle ; Machine learning ; Neural networks ; Optimal control ; Performance enhancement ; Solutions ; Supply-demand forecasting ; Teaching methods ; Technical Papers ; Water ; Water demand ; Water distribution ; Water distribution systems ; Water engineering ; Water resources management</subject><ispartof>Journal of water resources planning and management, 2018-12, Vol.144 (12)</ispartof><rights>2018 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a385t-579934407d4eca8b4cbbbf584a5a91ca8dac03fb7da3f62bb9d30331711f1e083</citedby><cites>FETCH-LOGICAL-a385t-579934407d4eca8b4cbbbf584a5a91ca8dac03fb7da3f62bb9d30331711f1e083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)WR.1943-5452.0000992$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)WR.1943-5452.0000992$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,75936,75944</link.rule.ids></links><search><creatorcontrib>Guo, Guancheng</creatorcontrib><creatorcontrib>Liu, Shuming</creatorcontrib><creatorcontrib>Wu, Yipeng</creatorcontrib><creatorcontrib>Li, Junyu</creatorcontrib><creatorcontrib>Zhou, Ren</creatorcontrib><creatorcontrib>Zhu, Xiaoyun</creatorcontrib><title>Short-Term Water Demand Forecast Based on Deep Learning Method</title><title>Journal of water resources planning and management</title><description>AbstractShort-time water demand forecasting is essential for optimal control in a water distribution system (WDS). Current methods (e.g., time-series models and conventional artificial neural networks) have limited power in practice due to the nonlinear nature of changes in water demand. In particular, 15-min time-step forecasting may not be accurate when using conventional models. To tackle this problem, this paper investigates the potential of deep learning in short-term water demand forecasting, developing a gated recurrent unit network (GRUN) model to forecast water demand 15 min and 24 h into the future with a 15-min time step. The performance of GRUN was compared with a conventional artificial neural network (ANN) model and seasonal autoregressive integrated moving average (SARIMA) model. A correction module was used to reduce the cumulative error. The results show that the deep learning method improves the performance of water demand prediction. The correction module enhances the performance of ANN and GRUN models. In general, deep neural network models like GRUN outperform the ANN and SARIMA models for both 15-min and 24-h forecasts. These findings can provide more flexible and effective solutions for water demand forecasting.</description><subject>Artificial neural networks</subject><subject>Autoregressive models</subject><subject>Current distribution</subject><subject>Deep learning</subject><subject>Demand</subject><subject>Economic forecasting</subject><subject>Error correction</subject><subject>Forecasting</subject><subject>Learning</subject><subject>Learning theory</subject><subject>Lifting tackle</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Optimal control</subject><subject>Performance enhancement</subject><subject>Solutions</subject><subject>Supply-demand forecasting</subject><subject>Teaching methods</subject><subject>Technical Papers</subject><subject>Water</subject><subject>Water demand</subject><subject>Water distribution</subject><subject>Water distribution systems</subject><subject>Water engineering</subject><subject>Water resources management</subject><issn>0733-9496</issn><issn>1943-5452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PAjEQhhujiYj-h0YveljsbNvdrQcTRFATjAlgODbttisQ2UK7HPz3dgPqyblMMvN-JA9Cl0B6QDK4ve5PB8Ob-aQHgtGEM572SBwh0iPU-b0dow7JKU0EE9kpOgthFTU54WkH3U8XzjfJzPo1nqvGevxo16o2eOS8LVVo8IMK1mBXx4fd4LFVvl7WH_jVNgtnztFJpT6DvTjsLnofDWeD52T89vQy6I8TRQveJDwXgjJGcsNiaKFZqbWueMEUVwLixaiS0ErnRtEqS7UWhhJKIQeowJKCdtHVPnfj3XZnQyNXbufrWClTgDQTECui6m6vKr0LwdtKbvxyrfyXBCJbXlK2vOR8Ils2smUjD7yiOdubVSjtX_yP83_jN1Snbdo</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Guo, Guancheng</creator><creator>Liu, Shuming</creator><creator>Wu, Yipeng</creator><creator>Li, Junyu</creator><creator>Zhou, Ren</creator><creator>Zhu, Xiaoyun</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>H97</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>20181201</creationdate><title>Short-Term Water Demand Forecast Based on Deep Learning Method</title><author>Guo, Guancheng ; Liu, Shuming ; Wu, Yipeng ; Li, Junyu ; Zhou, Ren ; Zhu, Xiaoyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a385t-579934407d4eca8b4cbbbf584a5a91ca8dac03fb7da3f62bb9d30331711f1e083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural networks</topic><topic>Autoregressive models</topic><topic>Current distribution</topic><topic>Deep learning</topic><topic>Demand</topic><topic>Economic forecasting</topic><topic>Error correction</topic><topic>Forecasting</topic><topic>Learning</topic><topic>Learning theory</topic><topic>Lifting tackle</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Optimal control</topic><topic>Performance enhancement</topic><topic>Solutions</topic><topic>Supply-demand forecasting</topic><topic>Teaching methods</topic><topic>Technical Papers</topic><topic>Water</topic><topic>Water demand</topic><topic>Water distribution</topic><topic>Water distribution systems</topic><topic>Water engineering</topic><topic>Water resources management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Guancheng</creatorcontrib><creatorcontrib>Liu, Shuming</creatorcontrib><creatorcontrib>Wu, Yipeng</creatorcontrib><creatorcontrib>Li, Junyu</creatorcontrib><creatorcontrib>Zhou, Ren</creatorcontrib><creatorcontrib>Zhu, Xiaoyun</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Journal of water resources planning and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Guancheng</au><au>Liu, Shuming</au><au>Wu, Yipeng</au><au>Li, Junyu</au><au>Zhou, Ren</au><au>Zhu, Xiaoyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short-Term Water Demand Forecast Based on Deep Learning Method</atitle><jtitle>Journal of water resources planning and management</jtitle><date>2018-12-01</date><risdate>2018</risdate><volume>144</volume><issue>12</issue><issn>0733-9496</issn><eissn>1943-5452</eissn><abstract>AbstractShort-time water demand forecasting is essential for optimal control in a water distribution system (WDS). Current methods (e.g., time-series models and conventional artificial neural networks) have limited power in practice due to the nonlinear nature of changes in water demand. In particular, 15-min time-step forecasting may not be accurate when using conventional models. To tackle this problem, this paper investigates the potential of deep learning in short-term water demand forecasting, developing a gated recurrent unit network (GRUN) model to forecast water demand 15 min and 24 h into the future with a 15-min time step. The performance of GRUN was compared with a conventional artificial neural network (ANN) model and seasonal autoregressive integrated moving average (SARIMA) model. A correction module was used to reduce the cumulative error. The results show that the deep learning method improves the performance of water demand prediction. The correction module enhances the performance of ANN and GRUN models. In general, deep neural network models like GRUN outperform the ANN and SARIMA models for both 15-min and 24-h forecasts. These findings can provide more flexible and effective solutions for water demand forecasting.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)WR.1943-5452.0000992</doi></addata></record>
fulltext fulltext
identifier ISSN: 0733-9496
ispartof Journal of water resources planning and management, 2018-12, Vol.144 (12)
issn 0733-9496
1943-5452
language eng
recordid cdi_proquest_journals_2112691579
source American Society of Civil Engineers:NESLI2:Journals:2014
subjects Artificial neural networks
Autoregressive models
Current distribution
Deep learning
Demand
Economic forecasting
Error correction
Forecasting
Learning
Learning theory
Lifting tackle
Machine learning
Neural networks
Optimal control
Performance enhancement
Solutions
Supply-demand forecasting
Teaching methods
Technical Papers
Water
Water demand
Water distribution
Water distribution systems
Water engineering
Water resources management
title Short-Term Water Demand Forecast Based on Deep Learning Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A36%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short-Term%20Water%20Demand%20Forecast%20Based%20on%20Deep%20Learning%20Method&rft.jtitle=Journal%20of%20water%20resources%20planning%20and%20management&rft.au=Guo,%20Guancheng&rft.date=2018-12-01&rft.volume=144&rft.issue=12&rft.issn=0733-9496&rft.eissn=1943-5452&rft_id=info:doi/10.1061/(ASCE)WR.1943-5452.0000992&rft_dat=%3Cproquest_cross%3E2112691579%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2112691579&rft_id=info:pmid/&rfr_iscdi=true