Short-Term Water Demand Forecast Based on Deep Learning Method
AbstractShort-time water demand forecasting is essential for optimal control in a water distribution system (WDS). Current methods (e.g., time-series models and conventional artificial neural networks) have limited power in practice due to the nonlinear nature of changes in water demand. In particul...
Gespeichert in:
Veröffentlicht in: | Journal of water resources planning and management 2018-12, Vol.144 (12) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Journal of water resources planning and management |
container_volume | 144 |
creator | Guo, Guancheng Liu, Shuming Wu, Yipeng Li, Junyu Zhou, Ren Zhu, Xiaoyun |
description | AbstractShort-time water demand forecasting is essential for optimal control in a water distribution system (WDS). Current methods (e.g., time-series models and conventional artificial neural networks) have limited power in practice due to the nonlinear nature of changes in water demand. In particular, 15-min time-step forecasting may not be accurate when using conventional models. To tackle this problem, this paper investigates the potential of deep learning in short-term water demand forecasting, developing a gated recurrent unit network (GRUN) model to forecast water demand 15 min and 24 h into the future with a 15-min time step. The performance of GRUN was compared with a conventional artificial neural network (ANN) model and seasonal autoregressive integrated moving average (SARIMA) model. A correction module was used to reduce the cumulative error. The results show that the deep learning method improves the performance of water demand prediction. The correction module enhances the performance of ANN and GRUN models. In general, deep neural network models like GRUN outperform the ANN and SARIMA models for both 15-min and 24-h forecasts. These findings can provide more flexible and effective solutions for water demand forecasting. |
doi_str_mv | 10.1061/(ASCE)WR.1943-5452.0000992 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2112691579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2112691579</sourcerecordid><originalsourceid>FETCH-LOGICAL-a385t-579934407d4eca8b4cbbbf584a5a91ca8dac03fb7da3f62bb9d30331711f1e083</originalsourceid><addsrcrecordid>eNp1kE1PAjEQhhujiYj-h0YveljsbNvdrQcTRFATjAlgODbttisQ2UK7HPz3dgPqyblMMvN-JA9Cl0B6QDK4ve5PB8Ob-aQHgtGEM572SBwh0iPU-b0dow7JKU0EE9kpOgthFTU54WkH3U8XzjfJzPo1nqvGevxo16o2eOS8LVVo8IMK1mBXx4fd4LFVvl7WH_jVNgtnztFJpT6DvTjsLnofDWeD52T89vQy6I8TRQveJDwXgjJGcsNiaKFZqbWueMEUVwLixaiS0ErnRtEqS7UWhhJKIQeowJKCdtHVPnfj3XZnQyNXbufrWClTgDQTECui6m6vKr0LwdtKbvxyrfyXBCJbXlK2vOR8Ils2smUjD7yiOdubVSjtX_yP83_jN1Snbdo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2112691579</pqid></control><display><type>article</type><title>Short-Term Water Demand Forecast Based on Deep Learning Method</title><source>American Society of Civil Engineers:NESLI2:Journals:2014</source><creator>Guo, Guancheng ; Liu, Shuming ; Wu, Yipeng ; Li, Junyu ; Zhou, Ren ; Zhu, Xiaoyun</creator><creatorcontrib>Guo, Guancheng ; Liu, Shuming ; Wu, Yipeng ; Li, Junyu ; Zhou, Ren ; Zhu, Xiaoyun</creatorcontrib><description>AbstractShort-time water demand forecasting is essential for optimal control in a water distribution system (WDS). Current methods (e.g., time-series models and conventional artificial neural networks) have limited power in practice due to the nonlinear nature of changes in water demand. In particular, 15-min time-step forecasting may not be accurate when using conventional models. To tackle this problem, this paper investigates the potential of deep learning in short-term water demand forecasting, developing a gated recurrent unit network (GRUN) model to forecast water demand 15 min and 24 h into the future with a 15-min time step. The performance of GRUN was compared with a conventional artificial neural network (ANN) model and seasonal autoregressive integrated moving average (SARIMA) model. A correction module was used to reduce the cumulative error. The results show that the deep learning method improves the performance of water demand prediction. The correction module enhances the performance of ANN and GRUN models. In general, deep neural network models like GRUN outperform the ANN and SARIMA models for both 15-min and 24-h forecasts. These findings can provide more flexible and effective solutions for water demand forecasting.</description><identifier>ISSN: 0733-9496</identifier><identifier>EISSN: 1943-5452</identifier><identifier>DOI: 10.1061/(ASCE)WR.1943-5452.0000992</identifier><language>eng</language><publisher>New York: American Society of Civil Engineers</publisher><subject>Artificial neural networks ; Autoregressive models ; Current distribution ; Deep learning ; Demand ; Economic forecasting ; Error correction ; Forecasting ; Learning ; Learning theory ; Lifting tackle ; Machine learning ; Neural networks ; Optimal control ; Performance enhancement ; Solutions ; Supply-demand forecasting ; Teaching methods ; Technical Papers ; Water ; Water demand ; Water distribution ; Water distribution systems ; Water engineering ; Water resources management</subject><ispartof>Journal of water resources planning and management, 2018-12, Vol.144 (12)</ispartof><rights>2018 American Society of Civil Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a385t-579934407d4eca8b4cbbbf584a5a91ca8dac03fb7da3f62bb9d30331711f1e083</citedby><cites>FETCH-LOGICAL-a385t-579934407d4eca8b4cbbbf584a5a91ca8dac03fb7da3f62bb9d30331711f1e083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://ascelibrary.org/doi/pdf/10.1061/(ASCE)WR.1943-5452.0000992$$EPDF$$P50$$Gasce$$H</linktopdf><linktohtml>$$Uhttp://ascelibrary.org/doi/abs/10.1061/(ASCE)WR.1943-5452.0000992$$EHTML$$P50$$Gasce$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,75936,75944</link.rule.ids></links><search><creatorcontrib>Guo, Guancheng</creatorcontrib><creatorcontrib>Liu, Shuming</creatorcontrib><creatorcontrib>Wu, Yipeng</creatorcontrib><creatorcontrib>Li, Junyu</creatorcontrib><creatorcontrib>Zhou, Ren</creatorcontrib><creatorcontrib>Zhu, Xiaoyun</creatorcontrib><title>Short-Term Water Demand Forecast Based on Deep Learning Method</title><title>Journal of water resources planning and management</title><description>AbstractShort-time water demand forecasting is essential for optimal control in a water distribution system (WDS). Current methods (e.g., time-series models and conventional artificial neural networks) have limited power in practice due to the nonlinear nature of changes in water demand. In particular, 15-min time-step forecasting may not be accurate when using conventional models. To tackle this problem, this paper investigates the potential of deep learning in short-term water demand forecasting, developing a gated recurrent unit network (GRUN) model to forecast water demand 15 min and 24 h into the future with a 15-min time step. The performance of GRUN was compared with a conventional artificial neural network (ANN) model and seasonal autoregressive integrated moving average (SARIMA) model. A correction module was used to reduce the cumulative error. The results show that the deep learning method improves the performance of water demand prediction. The correction module enhances the performance of ANN and GRUN models. In general, deep neural network models like GRUN outperform the ANN and SARIMA models for both 15-min and 24-h forecasts. These findings can provide more flexible and effective solutions for water demand forecasting.</description><subject>Artificial neural networks</subject><subject>Autoregressive models</subject><subject>Current distribution</subject><subject>Deep learning</subject><subject>Demand</subject><subject>Economic forecasting</subject><subject>Error correction</subject><subject>Forecasting</subject><subject>Learning</subject><subject>Learning theory</subject><subject>Lifting tackle</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Optimal control</subject><subject>Performance enhancement</subject><subject>Solutions</subject><subject>Supply-demand forecasting</subject><subject>Teaching methods</subject><subject>Technical Papers</subject><subject>Water</subject><subject>Water demand</subject><subject>Water distribution</subject><subject>Water distribution systems</subject><subject>Water engineering</subject><subject>Water resources management</subject><issn>0733-9496</issn><issn>1943-5452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PAjEQhhujiYj-h0YveljsbNvdrQcTRFATjAlgODbttisQ2UK7HPz3dgPqyblMMvN-JA9Cl0B6QDK4ve5PB8Ob-aQHgtGEM572SBwh0iPU-b0dow7JKU0EE9kpOgthFTU54WkH3U8XzjfJzPo1nqvGevxo16o2eOS8LVVo8IMK1mBXx4fd4LFVvl7WH_jVNgtnztFJpT6DvTjsLnofDWeD52T89vQy6I8TRQveJDwXgjJGcsNiaKFZqbWueMEUVwLixaiS0ErnRtEqS7UWhhJKIQeowJKCdtHVPnfj3XZnQyNXbufrWClTgDQTECui6m6vKr0LwdtKbvxyrfyXBCJbXlK2vOR8Ils2smUjD7yiOdubVSjtX_yP83_jN1Snbdo</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Guo, Guancheng</creator><creator>Liu, Shuming</creator><creator>Wu, Yipeng</creator><creator>Li, Junyu</creator><creator>Zhou, Ren</creator><creator>Zhu, Xiaoyun</creator><general>American Society of Civil Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>H97</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>20181201</creationdate><title>Short-Term Water Demand Forecast Based on Deep Learning Method</title><author>Guo, Guancheng ; Liu, Shuming ; Wu, Yipeng ; Li, Junyu ; Zhou, Ren ; Zhu, Xiaoyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a385t-579934407d4eca8b4cbbbf584a5a91ca8dac03fb7da3f62bb9d30331711f1e083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural networks</topic><topic>Autoregressive models</topic><topic>Current distribution</topic><topic>Deep learning</topic><topic>Demand</topic><topic>Economic forecasting</topic><topic>Error correction</topic><topic>Forecasting</topic><topic>Learning</topic><topic>Learning theory</topic><topic>Lifting tackle</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Optimal control</topic><topic>Performance enhancement</topic><topic>Solutions</topic><topic>Supply-demand forecasting</topic><topic>Teaching methods</topic><topic>Technical Papers</topic><topic>Water</topic><topic>Water demand</topic><topic>Water distribution</topic><topic>Water distribution systems</topic><topic>Water engineering</topic><topic>Water resources management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Guancheng</creatorcontrib><creatorcontrib>Liu, Shuming</creatorcontrib><creatorcontrib>Wu, Yipeng</creatorcontrib><creatorcontrib>Li, Junyu</creatorcontrib><creatorcontrib>Zhou, Ren</creatorcontrib><creatorcontrib>Zhu, Xiaoyun</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Journal of water resources planning and management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Guancheng</au><au>Liu, Shuming</au><au>Wu, Yipeng</au><au>Li, Junyu</au><au>Zhou, Ren</au><au>Zhu, Xiaoyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Short-Term Water Demand Forecast Based on Deep Learning Method</atitle><jtitle>Journal of water resources planning and management</jtitle><date>2018-12-01</date><risdate>2018</risdate><volume>144</volume><issue>12</issue><issn>0733-9496</issn><eissn>1943-5452</eissn><abstract>AbstractShort-time water demand forecasting is essential for optimal control in a water distribution system (WDS). Current methods (e.g., time-series models and conventional artificial neural networks) have limited power in practice due to the nonlinear nature of changes in water demand. In particular, 15-min time-step forecasting may not be accurate when using conventional models. To tackle this problem, this paper investigates the potential of deep learning in short-term water demand forecasting, developing a gated recurrent unit network (GRUN) model to forecast water demand 15 min and 24 h into the future with a 15-min time step. The performance of GRUN was compared with a conventional artificial neural network (ANN) model and seasonal autoregressive integrated moving average (SARIMA) model. A correction module was used to reduce the cumulative error. The results show that the deep learning method improves the performance of water demand prediction. The correction module enhances the performance of ANN and GRUN models. In general, deep neural network models like GRUN outperform the ANN and SARIMA models for both 15-min and 24-h forecasts. These findings can provide more flexible and effective solutions for water demand forecasting.</abstract><cop>New York</cop><pub>American Society of Civil Engineers</pub><doi>10.1061/(ASCE)WR.1943-5452.0000992</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0733-9496 |
ispartof | Journal of water resources planning and management, 2018-12, Vol.144 (12) |
issn | 0733-9496 1943-5452 |
language | eng |
recordid | cdi_proquest_journals_2112691579 |
source | American Society of Civil Engineers:NESLI2:Journals:2014 |
subjects | Artificial neural networks Autoregressive models Current distribution Deep learning Demand Economic forecasting Error correction Forecasting Learning Learning theory Lifting tackle Machine learning Neural networks Optimal control Performance enhancement Solutions Supply-demand forecasting Teaching methods Technical Papers Water Water demand Water distribution Water distribution systems Water engineering Water resources management |
title | Short-Term Water Demand Forecast Based on Deep Learning Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T00%3A36%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Short-Term%20Water%20Demand%20Forecast%20Based%20on%20Deep%20Learning%20Method&rft.jtitle=Journal%20of%20water%20resources%20planning%20and%20management&rft.au=Guo,%20Guancheng&rft.date=2018-12-01&rft.volume=144&rft.issue=12&rft.issn=0733-9496&rft.eissn=1943-5452&rft_id=info:doi/10.1061/(ASCE)WR.1943-5452.0000992&rft_dat=%3Cproquest_cross%3E2112691579%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2112691579&rft_id=info:pmid/&rfr_iscdi=true |