Short-Term Water Demand Forecast Based on Deep Learning Method

AbstractShort-time water demand forecasting is essential for optimal control in a water distribution system (WDS). Current methods (e.g., time-series models and conventional artificial neural networks) have limited power in practice due to the nonlinear nature of changes in water demand. In particul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of water resources planning and management 2018-12, Vol.144 (12)
Hauptverfasser: Guo, Guancheng, Liu, Shuming, Wu, Yipeng, Li, Junyu, Zhou, Ren, Zhu, Xiaoyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:AbstractShort-time water demand forecasting is essential for optimal control in a water distribution system (WDS). Current methods (e.g., time-series models and conventional artificial neural networks) have limited power in practice due to the nonlinear nature of changes in water demand. In particular, 15-min time-step forecasting may not be accurate when using conventional models. To tackle this problem, this paper investigates the potential of deep learning in short-term water demand forecasting, developing a gated recurrent unit network (GRUN) model to forecast water demand 15 min and 24 h into the future with a 15-min time step. The performance of GRUN was compared with a conventional artificial neural network (ANN) model and seasonal autoregressive integrated moving average (SARIMA) model. A correction module was used to reduce the cumulative error. The results show that the deep learning method improves the performance of water demand prediction. The correction module enhances the performance of ANN and GRUN models. In general, deep neural network models like GRUN outperform the ANN and SARIMA models for both 15-min and 24-h forecasts. These findings can provide more flexible and effective solutions for water demand forecasting.
ISSN:0733-9496
1943-5452
DOI:10.1061/(ASCE)WR.1943-5452.0000992