Sum of Disjoint Frame Sequences

We show that, if A and B are bounded operators on a Hilbert space and X and Y are strongly disjoint (orthogonal) frame sequences, then A ( X ) + B ( Y ) is a frame sequence if and only if the sum of the ranges of the synthesis operators of A ( X ) and B ( Y ) is closed. We also show that, given two...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Malaysian Mathematical Sciences Society 2020-01, Vol.43 (1), p.321-331
Hauptverfasser: Koo, Yoo Young, Lim, Jae Kun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that, if A and B are bounded operators on a Hilbert space and X and Y are strongly disjoint (orthogonal) frame sequences, then A ( X ) + B ( Y ) is a frame sequence if and only if the sum of the ranges of the synthesis operators of A ( X ) and B ( Y ) is closed. We also show that, given two disjoint frame sequences, the sum is a frame sequence if the sum of the ranges of the synthesis operators is closed but not vice versa. A counterexample is given by a couple of frames of shifts for two finitely generated shift-invariant spaces of L 2 ( R ) .
ISSN:0126-6705
2180-4206
DOI:10.1007/s40840-018-0682-1