On zero sets of harmonic and real analytic functions
In this paper we study some questions related to the zero sets of harmonic and real analytic functions in R N . We introduce the notion of analytic uniqueness sequences and, as an application, we show that the zero set of a non-constant real analytic function on a domain always has empty fine interi...
Gespeichert in:
Veröffentlicht in: | Annales mathématiques du Québec 2018-10, Vol.42 (2), p.159-167 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we study some questions related to the zero sets of harmonic and real analytic functions in
R
N
. We introduce the notion of analytic uniqueness sequences and, as an application, we show that the zero set of a non-constant real analytic function on a domain always has empty fine interior. We also prove that, for a certain category of sets
E
⊂
R
N
(containing the finely open sets), each function
f
defined on
E
is the restriction of a real analytic (respectively harmonic) function on an open neighbourhood of
E
if and only if
f
is “analytic (respectively harmonic) at each point” of
E
. |
---|---|
ISSN: | 2195-4755 2195-4763 |
DOI: | 10.1007/s40316-018-0098-1 |