On zero sets of harmonic and real analytic functions

In this paper we study some questions related to the zero sets of harmonic and real analytic functions in R N . We introduce the notion of analytic uniqueness sequences and, as an application, we show that the zero set of a non-constant real analytic function on a domain always has empty fine interi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales mathématiques du Québec 2018-10, Vol.42 (2), p.159-167
Hauptverfasser: Boivin, André, Gauthier, Paul M., Manolaki, Myrto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we study some questions related to the zero sets of harmonic and real analytic functions in R N . We introduce the notion of analytic uniqueness sequences and, as an application, we show that the zero set of a non-constant real analytic function on a domain always has empty fine interior. We also prove that, for a certain category of sets E ⊂ R N (containing the finely open sets), each function f defined on E is the restriction of a real analytic (respectively harmonic) function on an open neighbourhood of E if and only if f is “analytic (respectively harmonic) at each point” of E .
ISSN:2195-4755
2195-4763
DOI:10.1007/s40316-018-0098-1