Effect of the addition of Si into V2O5 coatings: Structure and tribo-mechanical properties
Vanadium oxide (V2O5) is one of the lubricious oxides with the potential to be used as a solid lubricant at elevated temperatures. However, the material itself is not hard wear-resistant, so most of the research has focused on adding V into hard nitride coatings that could lead to the formation of a...
Gespeichert in:
Veröffentlicht in: | Surface & coatings technology 2018-09, Vol.349, p.111-118 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Vanadium oxide (V2O5) is one of the lubricious oxides with the potential to be used as a solid lubricant at elevated temperatures. However, the material itself is not hard wear-resistant, so most of the research has focused on adding V into hard nitride coatings that could lead to the formation of a self-lubricating V2O5 layer when heated. The other possible solution, which has been less studied, is to look for mechanisms to enhance the hardness of the oxide coating. In this research, we investigate the effect of the addition of Si into the V2O5 coatings, aiming to find conditions that lead to enhance hardness and/or reduced wear while keeping the high temperature lubricity of the V2O5 structure. For this, Si modified V2O5 coatings were deposited using a dual magnetron sputtering system. The results showed that small additions of Si ( |
---|---|
ISSN: | 0257-8972 1879-3347 |
DOI: | 10.1016/j.surfcoat.2018.05.052 |