Bimagic Vertex Labelings

The notion of the equivalence of vertex labelings on a given graph is introduced. The equivalence of three bimagic labelings for regular graphs is proved. A particular solution is obtained for the problem of the existence of a 1-vertex bimagic vertex labeling of multipartite graphs, namely, for grap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cybernetics and systems analysis 2018-09, Vol.54 (5), p.771-778
Hauptverfasser: Semeniuta, M. F., Nedilko, S. N., Nedilko, V. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The notion of the equivalence of vertex labelings on a given graph is introduced. The equivalence of three bimagic labelings for regular graphs is proved. A particular solution is obtained for the problem of the existence of a 1-vertex bimagic vertex labeling of multipartite graphs, namely, for graphs isomorphic with K n , n , m . It is proved that the sequence of bi-regular graphs K n ( ij )  = (( K n  − 1  −  M ) +  K 1 ) − ( u n u i ) − ( u n u j ) admits 1-vertex bimagic vertex labeling, where u i , u j is any pair of non-adjacent vertices in the graph K n  − 1  −  M , u n is a vertex of K 1 , M is perfect matching of the complete graph K n  − 1 . It is established that if an r-regular graph G of order n is distance magic, then graph G + G has a 1-vertex bimagic vertex labeling with magic constants ( n  + 1)( n  +  r )/2 +  n 2 and ( n  + 1)( n  +  r )/2 +  nr . Two new types of graphs that do not admit 1-vertex bimagic vertex labelings are defined.
ISSN:1060-0396
1573-8337
DOI:10.1007/s10559-018-0079-z