Bimagic Vertex Labelings
The notion of the equivalence of vertex labelings on a given graph is introduced. The equivalence of three bimagic labelings for regular graphs is proved. A particular solution is obtained for the problem of the existence of a 1-vertex bimagic vertex labeling of multipartite graphs, namely, for grap...
Gespeichert in:
Veröffentlicht in: | Cybernetics and systems analysis 2018-09, Vol.54 (5), p.771-778 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The notion of the equivalence of vertex labelings on a given graph is introduced. The equivalence of three bimagic labelings for regular graphs is proved. A particular solution is obtained for the problem of the existence of a 1-vertex bimagic vertex labeling of multipartite graphs, namely, for graphs isomorphic with
K
n
,
n
,
m
. It is proved that the sequence of bi-regular graphs
K
n
(
ij
)
= ((
K
n
− 1
−
M
) +
K
1
) − (
u
n
u
i
) − (
u
n
u
j
) admits 1-vertex bimagic vertex labeling, where
u
i
,
u
j
is any pair of non-adjacent vertices in the graph
K
n
− 1
−
M
,
u
n
is a vertex of
K
1
,
M
is perfect matching of the complete graph
K
n
− 1
. It is established that if an r-regular graph
G
of order n is distance magic, then graph
G
+
G
has a 1-vertex bimagic vertex labeling with magic constants (
n
+ 1)(
n
+
r
)/2 +
n
2
and (
n
+ 1)(
n
+
r
)/2 +
nr
. Two new types of graphs that do not admit 1-vertex bimagic vertex labelings are defined. |
---|---|
ISSN: | 1060-0396 1573-8337 |
DOI: | 10.1007/s10559-018-0079-z |