Three-dimensional low-defect carbon nanotube/nitrogen-doped graphene hybrid aerogel-supported Pt nanoparticles as efficient electrocatalysts toward the methanol oxidation reaction
Although direct methanol fuel cells present a huge potential for application in modern society, the lack of high-efficiency anode catalysts with acceptable cost has largely hindered their large-scale commercialization. Here, we demonstrate a bottom-up approach for the fabrication of ultrafine Pt nan...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2018, Vol.6 (37), p.18165-18172 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Although direct methanol fuel cells present a huge potential for application in modern society, the lack of high-efficiency anode catalysts with acceptable cost has largely hindered their large-scale commercialization. Here, we demonstrate a bottom-up approach for the fabrication of ultrafine Pt nanoparticles dispersed on 3D low-defect carbon nanotube/nitrogen-doped graphene hybrid aerogels (Pt/LDCNT–NG)
via
a convenient and cost-effective self-assembly process. Both experiments and theoretical calculations reveal that the rationally assembled 3D Pt/LDCNT–NG architectures possess a low defect density, optimized electronic structure, and enhanced Pt stability, thus showing high electrocatalytic activity as well as a long lifespan toward the methanol oxidation reaction, which are far superior to those of conventional Pt/carbon black, Pt/acid-treated CNT, Pt/graphene, and Pt/nitrogen-doped graphene catalysts. It is anticipated that the synthetic strategy presented here can be further extended to the construction of various 3D heteroatom-doped low-defect carbonaceous nanomaterials that contain metals or metal oxides, which are conducive to the development of high-performance energy storage and conversion devices. |
---|---|
ISSN: | 2050-7488 2050-7496 |
DOI: | 10.1039/C8TA05124K |