Experimental and numerical investigation of the needling process for quartz fibers

This paper investigates the deformation and damage of quartz preforms during the needling process. Effect of needling position and fabric thickness on the resistance force of the needle are experimentally researched. A numerical methodology based on the concept of virtual fibers is proposed to estab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites science and technology 2018-09, Vol.165, p.115-123
Hauptverfasser: Xie, Junbo, Chen, Xiaoming, Zhang, Yifan, Fang, Guodong, Chen, Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper investigates the deformation and damage of quartz preforms during the needling process. Effect of needling position and fabric thickness on the resistance force of the needle are experimentally researched. A numerical methodology based on the concept of virtual fibers is proposed to establish the geometry models of 2D broken twill and nonwoven fabrics. Then the needling process of the fabric plies is simulated by finite element method using an explicit dynamics algorithm. Deflection, stretch and breakage of the fibers are analyzed. The simulated fiber architectures of the needling positions are fairly close to the practical observations. Resistance force of the needling process can be predicted with satisfactory accuracy. The aim of the proposed approach is to generate the virtual fiber structure of needled preforms and obtain the effect of needling process on the fiber damage. This approach would be helpful for designing low-damage preforms and improve the mechanical properties of needled composites.
ISSN:0266-3538
1879-1050
DOI:10.1016/j.compscitech.2018.06.009