Engineering closed-cell structure in lightweight and flexible carbon foam composite for high-efficient electromagnetic interference shielding

In this work, we develop a specifically engineered variant of carbonized melamine foam (cMF) by carrying systematic structural modifications with Au nanoparticles, graphene (G), Fe3O4 (IO) and poly(dimethyl siloxane) (PDMS). Our main goal is to construct a lightweight and flexible cMF composite with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Carbon (New York) 2018-09, Vol.136, p.299-308
Hauptverfasser: Sun, Yimin, Luo, Shaohong, Sun, Helei, Zeng, Wei, Ling, Chenxi, Chen, Dugang, Chan, Vincent, Liao, Kin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we develop a specifically engineered variant of carbonized melamine foam (cMF) by carrying systematic structural modifications with Au nanoparticles, graphene (G), Fe3O4 (IO) and poly(dimethyl siloxane) (PDMS). Our main goal is to construct a lightweight and flexible cMF composite with tailored 3D hierarchical architecture for achieving high-efficiency in electromagnetic interference (EMI) shielding. By capitalizing on the synergistic effect of the multifunctional components in the fabrication of the typical closed-cell structure, cMF-Au-G-IO/PDMS composite produced herein demonstrates superior physical properties including low density (116 mg/cm3), high conductivity (81.3 S/m), large specific surface area (708 m2/g), proven superparamagnetism (Ms = 22.6 emu/g), and moderate compressive strength (110 KPa), collectively leading to the significant attenuation effect towards EMI. The cumulative EMI shielding effectiveness (SE) of cMF-Au-G-IO/PDMS film with a thickness of 2 mm is determined as 30.5 dB in X band (8.2–12.4 GHz). Interestingly, SE is further raised up to 52.5 dB when the film thickness is increased to 10 mm. Hence, we envision the emergence of multifunctional cMF-based composite as a promising engineering system for fulfilling the demanding applications in EMI shielding. [Display omitted]
ISSN:0008-6223
1873-3891
DOI:10.1016/j.carbon.2018.04.084