Acceleration of brain cancer detection algorithms during surgery procedures using GPUs

The HypErspectraL Imaging Cancer Detection (HELICoiD) European project aims at developing a methodology for tumor tissue classification through hyperspectral imaging (HSI) techniques. This paper describes the development of a parallel implementation of the Support Vector Machines (SVMs) algorithm em...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microprocessors and microsystems 2018-09, Vol.61, p.171-178
Hauptverfasser: Torti, E., Fontanella, A., Florimbi, G., Leporati, F., Fabelo, H., Ortega, S., Callico, G.M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The HypErspectraL Imaging Cancer Detection (HELICoiD) European project aims at developing a methodology for tumor tissue classification through hyperspectral imaging (HSI) techniques. This paper describes the development of a parallel implementation of the Support Vector Machines (SVMs) algorithm employed for the classification of hyperspectral (HS) images of in vivo human brain tissue. SVM has demonstrated high accuracy in the supervised classification of biological tissues, and especially in the classification of human brain tumor. In this work, both the training and the classification stages of the SVMs were accelerated using Graphics Processing Units (GPUs). The acceleration of the training stage allows incorporating new samples during the surgical procedures to create new mathematical models of the classifier. Results show that the developed system is capable to perform efficient training and real-time compliant classification.
ISSN:0141-9331
1872-9436
DOI:10.1016/j.micpro.2018.06.005