Large-Scale Video Classification with Feature Space Augmentation coupled with Learned Label Relations and Ensembling
This paper presents the Axon AI's solution to the 2nd YouTube-8M Video Understanding Challenge, achieving the final global average precision (GAP) of 88.733% on the private test set (ranked 3rd among 394 teams, not considering the model size constraint), and 87.287% using a model that meets siz...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-09 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents the Axon AI's solution to the 2nd YouTube-8M Video Understanding Challenge, achieving the final global average precision (GAP) of 88.733% on the private test set (ranked 3rd among 394 teams, not considering the model size constraint), and 87.287% using a model that meets size requirement. Two sets of 7 individual models belonging to 3 different families were trained separately. Then, the inference results on a training data were aggregated from these multiple models and fed to train a compact model that meets the model size requirement. In order to further improve performance we explored and employed data over/sub-sampling in feature space, an additional regularization term during training exploiting label relationship, and learned weights for ensembling different individual models. |
---|---|
ISSN: | 2331-8422 |