Quasi-Monotonicity Formulas for Classical Obstacle Problems with Sobolev Coefficients and Applications
We establish Weiss’ and Monneau’s type quasi-monotonicity formulas for quadratic energies having matrix of coefficients in a Sobolev space with summability exponent larger than the space dimension and provide an application to the corresponding free boundary analysis for the related classical obstac...
Gespeichert in:
Veröffentlicht in: | Journal of optimization theory and applications 2020, Vol.184 (1), p.125-138 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 138 |
---|---|
container_issue | 1 |
container_start_page | 125 |
container_title | Journal of optimization theory and applications |
container_volume | 184 |
creator | Focardi, Matteo Geraci, Francesco Spadaro, Emanuele |
description | We establish Weiss’ and Monneau’s type quasi-monotonicity formulas for quadratic energies having matrix of coefficients in a Sobolev space with summability exponent larger than the space dimension and provide an application to the corresponding free boundary analysis for the related classical obstacle problems. |
doi_str_mv | 10.1007/s10957-018-1398-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2111384982</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2111384982</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-883b38e77efd0fd425f588ca6e58ecf8a98d99181eba96d8b7966934be591e1a3</originalsourceid><addsrcrecordid>eNp1kMFKxDAURYMoOI5-gLuA62jStM3LciiOCiOjqOuQtol26DQ1aZX-vRkquHL17uKe--AgdMnoNaNU3ARGZSYIZUAYl0CmI7RgmeAkAQHHaEFpkhCecHmKzkLYUUoliHSB7POoQ0MeXecG1zVVM0x47fx-bHXA1nlcxBCaSrd4W4ZBV63BT96VrdkH_N0MH_jFla41X7hwxto4YLohYN3VeNX3bQSHxnXhHJ1Y3QZz8XuX6G19-1rck8327qFYbUjFMzkQAF5yMEIYW1Nbp0lmM4BK5yYDU1nQEmopGTBTapnXUAqZ55KnpckkM0zzJbqad3vvPkcTBrVzo-_iS5UwxjikEpLYYnOr8i4Eb6zqfbPXflKMqoNONetUUac66FRTZJKZCbHbvRv_t_w_9ANCs3po</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111384982</pqid></control><display><type>article</type><title>Quasi-Monotonicity Formulas for Classical Obstacle Problems with Sobolev Coefficients and Applications</title><source>SpringerLink Journals - AutoHoldings</source><creator>Focardi, Matteo ; Geraci, Francesco ; Spadaro, Emanuele</creator><creatorcontrib>Focardi, Matteo ; Geraci, Francesco ; Spadaro, Emanuele</creatorcontrib><description>We establish Weiss’ and Monneau’s type quasi-monotonicity formulas for quadratic energies having matrix of coefficients in a Sobolev space with summability exponent larger than the space dimension and provide an application to the corresponding free boundary analysis for the related classical obstacle problems.</description><identifier>ISSN: 0022-3239</identifier><identifier>EISSN: 1573-2878</identifier><identifier>DOI: 10.1007/s10957-018-1398-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Calculus of Variations and Optimal Control; Optimization ; Engineering ; Free boundaries ; Mathematics ; Mathematics and Statistics ; Operations Research/Decision Theory ; Optimization ; Sobolev space ; Theory of Computation</subject><ispartof>Journal of optimization theory and applications, 2020, Vol.184 (1), p.125-138</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2018</rights><rights>Journal of Optimization Theory and Applications is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-883b38e77efd0fd425f588ca6e58ecf8a98d99181eba96d8b7966934be591e1a3</citedby><cites>FETCH-LOGICAL-c359t-883b38e77efd0fd425f588ca6e58ecf8a98d99181eba96d8b7966934be591e1a3</cites><orcidid>0000-0001-5278-7747</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10957-018-1398-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10957-018-1398-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Focardi, Matteo</creatorcontrib><creatorcontrib>Geraci, Francesco</creatorcontrib><creatorcontrib>Spadaro, Emanuele</creatorcontrib><title>Quasi-Monotonicity Formulas for Classical Obstacle Problems with Sobolev Coefficients and Applications</title><title>Journal of optimization theory and applications</title><addtitle>J Optim Theory Appl</addtitle><description>We establish Weiss’ and Monneau’s type quasi-monotonicity formulas for quadratic energies having matrix of coefficients in a Sobolev space with summability exponent larger than the space dimension and provide an application to the corresponding free boundary analysis for the related classical obstacle problems.</description><subject>Applications of Mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Engineering</subject><subject>Free boundaries</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Sobolev space</subject><subject>Theory of Computation</subject><issn>0022-3239</issn><issn>1573-2878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kMFKxDAURYMoOI5-gLuA62jStM3LciiOCiOjqOuQtol26DQ1aZX-vRkquHL17uKe--AgdMnoNaNU3ARGZSYIZUAYl0CmI7RgmeAkAQHHaEFpkhCecHmKzkLYUUoliHSB7POoQ0MeXecG1zVVM0x47fx-bHXA1nlcxBCaSrd4W4ZBV63BT96VrdkH_N0MH_jFla41X7hwxto4YLohYN3VeNX3bQSHxnXhHJ1Y3QZz8XuX6G19-1rck8327qFYbUjFMzkQAF5yMEIYW1Nbp0lmM4BK5yYDU1nQEmopGTBTapnXUAqZ55KnpckkM0zzJbqad3vvPkcTBrVzo-_iS5UwxjikEpLYYnOr8i4Eb6zqfbPXflKMqoNONetUUac66FRTZJKZCbHbvRv_t_w_9ANCs3po</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Focardi, Matteo</creator><creator>Geraci, Francesco</creator><creator>Spadaro, Emanuele</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-5278-7747</orcidid></search><sort><creationdate>2020</creationdate><title>Quasi-Monotonicity Formulas for Classical Obstacle Problems with Sobolev Coefficients and Applications</title><author>Focardi, Matteo ; Geraci, Francesco ; Spadaro, Emanuele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-883b38e77efd0fd425f588ca6e58ecf8a98d99181eba96d8b7966934be591e1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applications of Mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Engineering</topic><topic>Free boundaries</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Sobolev space</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Focardi, Matteo</creatorcontrib><creatorcontrib>Geraci, Francesco</creatorcontrib><creatorcontrib>Spadaro, Emanuele</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of optimization theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Focardi, Matteo</au><au>Geraci, Francesco</au><au>Spadaro, Emanuele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasi-Monotonicity Formulas for Classical Obstacle Problems with Sobolev Coefficients and Applications</atitle><jtitle>Journal of optimization theory and applications</jtitle><stitle>J Optim Theory Appl</stitle><date>2020</date><risdate>2020</risdate><volume>184</volume><issue>1</issue><spage>125</spage><epage>138</epage><pages>125-138</pages><issn>0022-3239</issn><eissn>1573-2878</eissn><abstract>We establish Weiss’ and Monneau’s type quasi-monotonicity formulas for quadratic energies having matrix of coefficients in a Sobolev space with summability exponent larger than the space dimension and provide an application to the corresponding free boundary analysis for the related classical obstacle problems.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10957-018-1398-y</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5278-7747</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-3239 |
ispartof | Journal of optimization theory and applications, 2020, Vol.184 (1), p.125-138 |
issn | 0022-3239 1573-2878 |
language | eng |
recordid | cdi_proquest_journals_2111384982 |
source | SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Calculus of Variations and Optimal Control Optimization Engineering Free boundaries Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Sobolev space Theory of Computation |
title | Quasi-Monotonicity Formulas for Classical Obstacle Problems with Sobolev Coefficients and Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A26%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasi-Monotonicity%20Formulas%20for%20Classical%20Obstacle%20Problems%20with%20Sobolev%20Coefficients%20and%20Applications&rft.jtitle=Journal%20of%20optimization%20theory%20and%20applications&rft.au=Focardi,%20Matteo&rft.date=2020&rft.volume=184&rft.issue=1&rft.spage=125&rft.epage=138&rft.pages=125-138&rft.issn=0022-3239&rft.eissn=1573-2878&rft_id=info:doi/10.1007/s10957-018-1398-y&rft_dat=%3Cproquest_cross%3E2111384982%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2111384982&rft_id=info:pmid/&rfr_iscdi=true |