Quasi-Monotonicity Formulas for Classical Obstacle Problems with Sobolev Coefficients and Applications

We establish Weiss’ and Monneau’s type quasi-monotonicity formulas for quadratic energies having matrix of coefficients in a Sobolev space with summability exponent larger than the space dimension and provide an application to the corresponding free boundary analysis for the related classical obstac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of optimization theory and applications 2020, Vol.184 (1), p.125-138
Hauptverfasser: Focardi, Matteo, Geraci, Francesco, Spadaro, Emanuele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We establish Weiss’ and Monneau’s type quasi-monotonicity formulas for quadratic energies having matrix of coefficients in a Sobolev space with summability exponent larger than the space dimension and provide an application to the corresponding free boundary analysis for the related classical obstacle problems.
ISSN:0022-3239
1573-2878
DOI:10.1007/s10957-018-1398-y