Quasi-Monotonicity Formulas for Classical Obstacle Problems with Sobolev Coefficients and Applications
We establish Weiss’ and Monneau’s type quasi-monotonicity formulas for quadratic energies having matrix of coefficients in a Sobolev space with summability exponent larger than the space dimension and provide an application to the corresponding free boundary analysis for the related classical obstac...
Gespeichert in:
Veröffentlicht in: | Journal of optimization theory and applications 2020, Vol.184 (1), p.125-138 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We establish Weiss’ and Monneau’s type quasi-monotonicity formulas for quadratic energies having matrix of coefficients in a Sobolev space with summability exponent larger than the space dimension and provide an application to the corresponding free boundary analysis for the related classical obstacle problems. |
---|---|
ISSN: | 0022-3239 1573-2878 |
DOI: | 10.1007/s10957-018-1398-y |