Zero-Sum Stochastic Differential Game in Finite Horizon Involving Impulse Controls

This paper considers the problem of two-player zero-sum stochastic differential game with both players adopting impulse controls in finite horizon under rather weak assumptions on the cost functions ( c and χ not decreasing in time). We use the dynamic programming principle and viscosity solutions a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics & optimization 2020-06, Vol.81 (3), p.1055-1087
Hauptverfasser: El Asri, Brahim, Mazid, Sehail
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper considers the problem of two-player zero-sum stochastic differential game with both players adopting impulse controls in finite horizon under rather weak assumptions on the cost functions ( c and χ not decreasing in time). We use the dynamic programming principle and viscosity solutions approach to show existence and uniqueness of a solution for the Hamilton–Jacobi–Bellman–Isaacs (HJBI) partial differential equation (PDE) of the game. We prove that the upper and lower value functions coincide.
ISSN:0095-4616
1432-0606
DOI:10.1007/s00245-018-9529-2