Zero-Sum Stochastic Differential Game in Finite Horizon Involving Impulse Controls
This paper considers the problem of two-player zero-sum stochastic differential game with both players adopting impulse controls in finite horizon under rather weak assumptions on the cost functions ( c and χ not decreasing in time). We use the dynamic programming principle and viscosity solutions a...
Gespeichert in:
Veröffentlicht in: | Applied mathematics & optimization 2020-06, Vol.81 (3), p.1055-1087 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper considers the problem of two-player zero-sum stochastic differential game with both players adopting impulse controls in finite horizon under rather weak assumptions on the cost functions (
c
and
χ
not decreasing in time). We use the dynamic programming principle and viscosity solutions approach to show existence and uniqueness of a solution for the Hamilton–Jacobi–Bellman–Isaacs (HJBI) partial differential equation (PDE) of the game. We prove that the upper and lower value functions coincide. |
---|---|
ISSN: | 0095-4616 1432-0606 |
DOI: | 10.1007/s00245-018-9529-2 |