Decision framework for optimal installation of outriggers in tall buildings

Installation sequence of outrigger system, an important structural component of high-rise buildings, is often determined simply based on engineers' experience, posing a threat to the structural safety and stability. This paper proposes a comprehensive decision framework for developing the optim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automation in construction 2018-09, Vol.93, p.200-213
Hauptverfasser: Zhou, Kang, Luo, Xiao-Wei, Li, Qiu-Sheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Installation sequence of outrigger system, an important structural component of high-rise buildings, is often determined simply based on engineers' experience, posing a threat to the structural safety and stability. This paper proposes a comprehensive decision framework for developing the optimal installation plan for the outrigger system, in which construction simulation and safety analysis of the overall structural system are well integrated. The proposed framework is applied to a super-tall building with a height of 600 m. First, the finite element method (FEM) model of the skyscraper used for construction simulation is validated by field measurements during Typhoon ‘Nida’. Based on the validated FEM model, the lower limits (earliest) for installing the outrigger system are obtained through the outrigger trusses' safety analysis for the service stage of the building, while the upper limits (latest) are determined through the analysis of structural stiffness and global stability for the construction stage. Thereupon, a rational plan is established for installing the outrigger system into the skyscraper, and the viability and efficiency of the proposed decision framework are examined by analyzing the construction simulation models. The outcomes of this study are expected to be of use and interest for structural engineers and researchers involved in construction management of installing outriggers into high-rise buildings, and therefore provide valuable implications for other similar projects. •Propose a decision framework for optimal installation of outriggers in skyscrapers.•Identify the latest time for installing outriggers by analyzing structural stiffness and stability during construction.•Determine the earliest time for installing outriggers through safety considerations of outriggers at service stage.•Validate the proposed framework by construction simulation for a 600 m high skyscraper.
ISSN:0926-5805
1872-7891
DOI:10.1016/j.autcon.2018.05.017