QSAR Study of (5-Nitroheteroaryl-1,3,4-Thiadiazole-2-yl) Piperazinyl Derivatives to Predict New Similar Compounds as Antileishmanial Agents

To search for newer and potent antileishmanial drugs, a series of 36 compounds of 5-(5-nitroheteroaryl-2-yl)-1,3,4-thiadiazole derivatives were subjected to a quantitative structure-activity relationship (QSAR) analysis for studying, interpreting, and predicting activities and designing new compound...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in physical chemistry 2018-01, Vol.2018, p.1-10
Hauptverfasser: Ousaa, Abdellah, Elidrissi, Bouhya, Ghamali, Mounir, Chtita, Samir, Aouidate, Adnane, Bouachrine, Mohammed, Lakhlifi, Tahar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To search for newer and potent antileishmanial drugs, a series of 36 compounds of 5-(5-nitroheteroaryl-2-yl)-1,3,4-thiadiazole derivatives were subjected to a quantitative structure-activity relationship (QSAR) analysis for studying, interpreting, and predicting activities and designing new compounds using several statistical tools. The multiple linear regression (MLR), nonlinear regression (RNLM), and artificial neural network (ANN) models were developed using 30 molecules having pIC50 ranging from 3.155 to 5.046. The best generated MLR, RNLM, and ANN models show conventional correlation coefficients R of 0.750, 0.782, and 0.967 as well as their leave-one-out cross-validation correlation coefficients RCV of 0.722, 0.744, and 0.720, respectively. The predictive ability of those models was evaluated by the external validation using a test set of 6 molecules with predicted correlation coefficients Rtest of 0.840, 0.850, and 0.802, respectively. The applicability domains of MLR and MNLR transparent models were investigated using William’s plot to detect outliers and outsides compounds. We expect that this study would be of great help in lead optimization for early drug discovery of new similar compounds.
ISSN:1687-7985
1687-7993
DOI:10.1155/2018/2569129