Prony’s Method Under an Almost Sharp Multivariate Ingham Inequality

The parameter reconstruction problem in a sum of Dirac measures from its low frequency trigonometric moments is well understood in the univariate case and has a sharp transition of identifiability with respect to the ratio of the separation distance of the parameters and the order of moments. Toward...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of fourier analysis and applications 2018-10, Vol.24 (5), p.1306-1318
Hauptverfasser: Kunis, Stefan, Möller, H. Michael, Peter, Thomas, von der Ohe, Ulrich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The parameter reconstruction problem in a sum of Dirac measures from its low frequency trigonometric moments is well understood in the univariate case and has a sharp transition of identifiability with respect to the ratio of the separation distance of the parameters and the order of moments. Towards a similar statement in the multivariate case, we present an Ingham inequality which improves the previously best known dimension-dependent constant from square-root growth to a logarithmic one. Secondly, we refine an argument that an Ingham inequality implies identifiability in multivariate Prony methods to the case of commonly used max-degree by a short linear algebra argument, closely related to a flat extension principle and the stagnation of a generalized Hilbert function.
ISSN:1069-5869
1531-5851
DOI:10.1007/s00041-017-9571-5