Depth-Recursive Tomography Along the Eger Rift Using the S01 Profile Refraction Data: Tested at the KTB Super Drilling Hole, Structural Interpretation Supported by Magnetic, Gravity and Petrophysical Data
The refraction data from the SUDETES 2003 experiment were used for high-resolution tomography along the profile S01. The S01 profile crosses the zone Erbendorf-Vohenstrauss (ZEV) near the KTB site, then follows the SW–NE oriented Eger Rift in the middle part and continues toward the NE across the El...
Gespeichert in:
Veröffentlicht in: | Surveys in geophysics 2009-11, Vol.30 (6), p.561-600 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The refraction data from the SUDETES 2003 experiment were used for high-resolution tomography along the profile S01. The S01 profile crosses the zone Erbendorf-Vohenstrauss (ZEV) near the KTB site, then follows the SW–NE oriented Eger Rift in the middle part and continues toward the NE across the Elbe zone and the Sudetic structures as far as the Trans-European Suture Zone. To get the best resolution in the velocity image only the first arrivals of Pg waves with minimum picking errors were used. The previous depth-recursive tomographic method, based on Claerbout’s imaging principle, has been adapted to perform the linearized inversions in iterative mode. This innovative DRTG method (Depth-Recursive Tomography on Grid) uses a regular system of refraction rays covering uniformly the mapped domain. The DRTG iterations yielded a fine-grid velocity model with a required level of RMS travel-time fit and the model roughness. The travel-time residuals, assessed at single depth levels, were used to derive the statistical lateral resolution of “lens-shaped” velocity anomalies. Thus, for the 95% confidence level and 5% anomalies, one can resolve their lateral sizes from 15 to 40 km at the depths from 0 to 20 km. The DRTG tomography succeeded in resolving a significant low-velocity zone (LVZ) bound to the Franconian lineament nearby the KTB site. It is shown that the next optimization of the model best updated during the DRTG iterations tends to a minimum-feature model with sweeping out any LVZs. The velocities derived by the depth-recursive tomography relate to the horizontal directions of wave propagation rather than to the vertical. This was proved at the KTB site where pronounced anisotropic behavior of a steeply tilted metamorphic rock complex of the ZEV unit has been previously determined. Involving a ~7% anisotropy observed for the “slow” axis of symmetry oriented coincidentally in the horizontal SW–NE direction of the S01 profile, the DRTG velocity model agrees fairly well with the log velocities at the KTB site. Comparison with the reflectivity map obtained on the reflection seismic profile KTB8502 confirmed the validity of DRTG velocity model at maximum depths of ~16 km. The DRTG tomography enabled us to follow the relationship of major geological units of Bohemian Massif as they manifested in the obtained P-wave velocity image down to 15 km. Although the contact of Saxothuringian and the Teplá-Barrandian Unit (TBU) is collateral with the S01 profile directi |
---|---|
ISSN: | 0169-3298 1573-0956 |
DOI: | 10.1007/s10712-009-9068-0 |