(−)-Epigallocatechin-3-gallate (EGCG) inhibits starch digestion and improves glucose homeostasis through direct or indirect activation of PXR/CAR-mediated phase II metabolism in diabetic mice

As a major component of green tea, (−)-epigallocatechin-3-gallate (EGCG) has attracted interest from scientists owing to its potential to combat a variety of human diseases including abnormal glucose metabolism in obesity and diabetes. This study aims to (1) evaluate the molecular mechanism of EGCG...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Food & function 2018-09, Vol.9 (9), p.4651-4663
Hauptverfasser: Li, Xiaopeng, Li, Shuyi, Chen, Mo, Wang, Jingyi, Xie, Bijun, Sun, Zhida
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As a major component of green tea, (−)-epigallocatechin-3-gallate (EGCG) has attracted interest from scientists owing to its potential to combat a variety of human diseases including abnormal glucose metabolism in obesity and diabetes. This study aims to (1) evaluate the molecular mechanism of EGCG in starch digestion before EGCG absorption; (2) investigate the link between PXR/CAR-mediated phase II metabolism and glucose homeostasis after EGCG is transported to small intestine and liver. EGCG suppressed starch hydrolysis both in vitro and in vivo . Molecular simulation results demonstrated that EGCG could bind to the active site of α-amylase and α-glucosidase, acting as an inhibitor. In addition, the anti-diabetic action of EGCG was investigated in high fat diet and STZ-induced type 2 diabetes. EGCG improved glucose homeostasis and inhibited the process of gluconeogenesis (PEPCK and G-6-Pase) and lipogenesis (SREBP-1C, FAS and ACC1) in the liver. Meanwhile, EGCG treatment activated PXR/CAR, accompanied by upgrading PXR/CAR-mediated phase II drug metabolism enzyme expression in small intestine and liver, involving SULT1A1, UGT1A1 and SULT2B1b. Dietary polyphenol EGCG could serve as a promising PXR/CAR activator and therapeutic intervention in diabetes. As a major component of green tea, (−)-epigallocatechin-3-gallate (EGCG) has attracted interest from scientists owing to its potential to combat a variety of human diseases including abnormal glucose metabolism in obesity and diabetes.
ISSN:2042-6496
2042-650X
DOI:10.1039/c8fo01293h