GritNet 2: Real-Time Student Performance Prediction with Domain Adaptation

Increasingly fast development and update cycle of online course contents, and diverse demographics of students in each online classroom, make student performance prediction in real-time (before the course finishes) and/or on curriculum without specific historical performance data available interesti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2019-02
Hauptverfasser: Byung-Hak, Kim, Vizitei, Ethan, Ganapathi, Varun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Increasingly fast development and update cycle of online course contents, and diverse demographics of students in each online classroom, make student performance prediction in real-time (before the course finishes) and/or on curriculum without specific historical performance data available interesting topics for both industrial research and practical needs. In this research, we tackle the problem of real-time student performance prediction with on-going courses in a domain adaptation framework, which is a system trained on students' labeled outcome from one set of previous coursework but is meant to be deployed on another. In particular, we first introduce recently-developed GritNet architecture which is the current state of the art for student performance prediction problem, and develop a new \emph{unsupervised} domain adaptation method to transfer a GritNet trained on a past course to a new course without any (students' outcome) label. Our results for real Udacity students' graduation predictions show that the GritNet not only \emph{generalizes} well from one course to another across different Nanodegree programs, but enhances real-time predictions explicitly in the first few weeks when accurate predictions are most challenging.
ISSN:2331-8422