LIMIT THEOREMS FOR EIGENVECTORS OF THE NORMALIZED LAPLACIAN FOR RANDOM GRAPHS

We prove a central limit theorem for the components of the eigenvectors corresponding to the d largest eigenvalues of the normalized Laplacian matrix of a finite dimensional random dot product graph. As a corollary, we show that for stochastic blockmodel graphs, the rows of the spectral embedding of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Annals of statistics 2018-10, Vol.46 (5), p.2360-2415
Hauptverfasser: Tang, Minh, Priebe, Carey E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove a central limit theorem for the components of the eigenvectors corresponding to the d largest eigenvalues of the normalized Laplacian matrix of a finite dimensional random dot product graph. As a corollary, we show that for stochastic blockmodel graphs, the rows of the spectral embedding of the normalized Laplacian converge to multivariate normals and, furthermore, the mean and the covariance matrix of each row are functions of the associated vertex’s block membership. Together with prior results for the eigenvectors of the adjacency matrix, we then compare, via the Chernoff information between multivariate normal distributions, how the choice of embedding method impacts subsequent inference. We demonstrate that neither embedding method dominates with respect to the inference task of recovering the latent block assignments.
ISSN:0090-5364
2168-8966
DOI:10.1214/17-AOS1623