An ultralight and flexible sodium titanate nanowire aerogel with superior sodium storage

An ultralight, conductive, and flexible 3D assembly of a metal oxide nanowire aerogel as an electrode for energy storage devices without additives and typically inconvenient flexible supported-substrates remains a challenge. Herein, we report a new 3D highly ordered layer-by-layer stacking sodium ti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2018, Vol.6 (36), p.17495-17502
Hauptverfasser: Tran, Ngoc Quang, Le, Thi Anh, Lee, Hyoyoung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An ultralight, conductive, and flexible 3D assembly of a metal oxide nanowire aerogel as an electrode for energy storage devices without additives and typically inconvenient flexible supported-substrates remains a challenge. Herein, we report a new 3D highly ordered layer-by-layer stacking sodium titanate@reduced graphene oxide core–shell (NTO@GCS) nanowire aerogel that has an ultra-high aspect ratio with a diameter of 30–50 nm and typical length up to 100 μm for a new class of convenient sodium-ion battery (SIB) anodes. The formation mechanism of the unique 3D NTO nanowire aerogel, the precursor of the NTO@GCS aerogel, was carefully proposed, demonstrating that the key challenge for this synthesis strategy was to form a stable and homogeneous ultrafine NTO nanotube gel suspension. In addition, for high performance sodium-ion storage, reduced graphene oxides (rGOs) were introduced into the NTO aerogel backbone. The critical role of the graphene structure between the NTO nanowires and rGO sheets in Na + storage was systematically investigated. Compared to the 3D pristine NTO aerogel and 3D NTO nanowires on graphene sheet paper, the 3D interconnected NTO–GCS aerogel electrode facilitated rapid ion/electrolyte transportation, resulting in remarkably enhanced Na + storage with a reversible capacity of 240 mA h g −1 at 0.2C and durable cycling stability after 4900 cycles at a rate of 2 and 4C with nearly 100% coulombic efficiency.
ISSN:2050-7488
2050-7496
DOI:10.1039/C8TA06988C