Otolith annulus validation and variables influencing false annuli formation in dorsal spines of saugeye
Marginal increment analysis is a common technique for validating formation of a single annual growth ring on an ageing structure. False annuli can form on ageing structures when environmental variables affect growth of a fish, potentially resulting in age estimation bias. Therefore, validating agein...
Gespeichert in:
Veröffentlicht in: | Journal of applied ichthyology 2018-10, Vol.34 (5), p.1153-1159 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Marginal increment analysis is a common technique for validating formation of a single annual growth ring on an ageing structure. False annuli can form on ageing structures when environmental variables affect growth of a fish, potentially resulting in age estimation bias. Therefore, validating ageing structures is essential to ensure that accurate and precise age estimates are collected when assessing fish population dynamics. Saugeye (Sander vitreus, [Mitchill, 1818]) and S. Canadensis, [Griffith and Smith, 1834]) are highly valued sport fish that are stocked across the Midwest United States. Using marginal increment analysis, we confirmed that a single annulus was formed yearly in otoliths of juvenile saugeye, however two annuli formed in dorsal spines in a single year. Timing of the first annulus formation in both otoliths and dorsal spines was completed after a slow growth period during winter (otoliths forming in April; dorsal spines forming in March). The second annulus (false annulus) that formed during August in dorsal spines did not form in otoliths. To understand what environmental factors may influence the false annulus to form, we collected monthly water temperatures and percent empty stomachs of juvenile saugeye. The highest water temperatures of the year occur during July and August, which resulted in saugeye seeking thermal refuge and affecting feeding habits. Mean monthly temperature and percent empty stomachs were positively correlated, so during times of high temperatures foraging rates declined, suggesting the formation of false annulus on dorsal spines of juvenile saugeye. This study demonstrates how thermal stress affected accuracy of non‐lethal aging structures and further emphasizes the need for age validation studies prior to using non‐lethal ageing structures to estimate age for a particular species from different aquatic systems. |
---|---|
ISSN: | 0175-8659 1439-0426 |
DOI: | 10.1111/jai.13776 |