Preordering saddle‐point systems for sparse LDLT factorization without pivoting

Summary This paper focuses on efficiently solving large sparse symmetric indefinite systems of linear equations in saddle‐point form using a fill‐reducing ordering technique with a direct solver. Row and column permutations partition the saddle‐point matrix into a block structure constituting a prio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerical linear algebra with applications 2018-10, Vol.25 (5), p.n/a
Hauptverfasser: Lungten, Sangye, Schilders, Wil H.A., Scott, Jennifer A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Summary This paper focuses on efficiently solving large sparse symmetric indefinite systems of linear equations in saddle‐point form using a fill‐reducing ordering technique with a direct solver. Row and column permutations partition the saddle‐point matrix into a block structure constituting a priori pivots of order 1 and 2. The partitioned matrix is compressed by treating each nonzero block as a single entry, and a fill‐reducing ordering is applied to the corresponding compressed graph. It is shown that, provided the saddle‐point matrix satisfies certain criteria, a block LDLT factorization can be computed using the resulting pivot sequence without modification. Numerical results for a range of problems from practical applications using a modern sparse direct solver are presented to illustrate the effectiveness of the approach.
ISSN:1070-5325
1099-1506
DOI:10.1002/nla.2173