Preordering saddle‐point systems for sparse LDLT factorization without pivoting
Summary This paper focuses on efficiently solving large sparse symmetric indefinite systems of linear equations in saddle‐point form using a fill‐reducing ordering technique with a direct solver. Row and column permutations partition the saddle‐point matrix into a block structure constituting a prio...
Gespeichert in:
Veröffentlicht in: | Numerical linear algebra with applications 2018-10, Vol.25 (5), p.n/a |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Summary
This paper focuses on efficiently solving large sparse symmetric indefinite systems of linear equations in saddle‐point form using a fill‐reducing ordering technique with a direct solver. Row and column permutations partition the saddle‐point matrix into a block structure constituting a priori pivots of order 1 and 2. The partitioned matrix is compressed by treating each nonzero block as a single entry, and a fill‐reducing ordering is applied to the corresponding compressed graph. It is shown that, provided the saddle‐point matrix satisfies certain criteria, a block LDLT factorization can be computed using the resulting pivot sequence without modification. Numerical results for a range of problems from practical applications using a modern sparse direct solver are presented to illustrate the effectiveness of the approach. |
---|---|
ISSN: | 1070-5325 1099-1506 |
DOI: | 10.1002/nla.2173 |