A Differential Mobility Analyzer (DMA) for Size Selection of Nanoparticles at High Flow Rates
This article demonstrates the feasibility of scaling-up the technique for particle size selection in the gas phase based on differential mobility analysis. Nano-DMAs used to select the particle size in processes for the synthesis of nanomaterials in the laboratory operate at aerosol flow rates of a...
Gespeichert in:
Veröffentlicht in: | Aerosol science and technology 2009-01, Vol.43 (1), p.25-37 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article demonstrates the feasibility of scaling-up the technique for particle size selection in the gas phase based on differential mobility analysis. Nano-DMAs used to select the particle size in processes for the synthesis of nanomaterials in the laboratory operate at aerosol flow rates of a few liters per minute. A new DMA capable of classifying nanoparticles of up to 30 nm in size at aerosol flow rates as high as 100 l· min
−1
will be presented (HF-DMA). A major advantage of the HF-DMA over current nano-DMAs covering the same particle size is that its resolution is almost unaffected by Brownian diffusion for particles as small as 3 nm. Monodisperse nanoparticles in the 5 to 25 nm size range have been produced at flow rates of up to 90 l· min
−1
. The spread in particle size and the particle number concentration were studied with respect to their dependency on the flow rates in the HF-DMA. The measurements reflect the behavior predicted by the theory. The HF-DMA makes it possible to deliver nanoparticles of a well-defined size at yields two orders of magnitude higher than with current nano-DMAs. |
---|---|
ISSN: | 0278-6826 1521-7388 |
DOI: | 10.1080/02786820802446812 |