Ligand dissociation mechanisms from all-atom simulations: Are we there yet?

Large parallel gains in the development of both computational resources as well as sampling methods have now made it possible to simulate dissociation events in ligand-protein complexes with all--atom resolution. Such encouraging progress, together with the inherent spatiotemporal resolution associa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-09
Hauptverfasser: Joao Marcelo Lamim Ribeiro, Sun-Ting, Tsai, Pramanik, Debabrata, Wang, Yihang, Tiwary, Pratyush
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Large parallel gains in the development of both computational resources as well as sampling methods have now made it possible to simulate dissociation events in ligand-protein complexes with all--atom resolution. Such encouraging progress, together with the inherent spatiotemporal resolution associated with molecular simulations, has left their use for investigating dissociation processes brimming with potential, both in rational drug design, where it can be an invaluable tool for determining the mechanistic driving forces behind dissociation rate constants, as well as in force-field development, where it can provide a catalog of transient molecular structures on which to refine force-fields. Although much progress has been made in making force-fields more accurate, reducing their error for transient structures along a transition path could yet prove to be a critical development helping to make kinetic predictions much more accurate. In what follows we will provide a state-of-the-art compilation of the molecular dynamics (MD) methods used to investigate the kinetics and mechanisms of ligand-protein dissociation processes. Due to the timescales of such processes being slower than what is accessible using straightforward MD simulations, several ingenious schemes are being devised at a rapid rate to overcome this obstacle. Here we provide an up-to-date compendium of such methods and their achievements/shortcomings in extracting mechanistic insight into ligand-protein dissociation. We conclude with a critical and provocative appraisal attempting to answer the title of this review.
ISSN:2331-8422