Fruit category classification via an eight-layer convolutional neural network with parametric rectified linear unit and dropout technique

In this paper, we apply an improved deep convolutional neural network (CNN) in fruit category classification, which is a hotspot in computer vision field. We created an 8-layer deep convolutional neural network, and utilized parametric rectified linear unit to take the place of plain rectified linea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Multimedia tools and applications 2020-06, Vol.79 (21-22), p.15117-15133
Hauptverfasser: Wang, Shui-Hua, Chen, Yi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we apply an improved deep convolutional neural network (CNN) in fruit category classification, which is a hotspot in computer vision field. We created an 8-layer deep convolutional neural network, and utilized parametric rectified linear unit to take the place of plain rectified linear unit, and placed dropout layer before each fully-connected layer. Data augmentation was used to help avoid overfitting. Our 8-layer deep convolutional neural network secured an overall accuracy of 95.67%. This proposed 8-layer method performs better than five state-of-the-art methods using traditional machine learning methods and one state-of-the-art CNN method.
ISSN:1380-7501
1573-7721
DOI:10.1007/s11042-018-6661-6