Variational Bayesian Inference for Infinite Dirichlet Mixture Towards Accurate Data Categorization

In this paper, we focus on a variational Bayesian learning approach to infinite Dirichlet mixture model (VarInDMM) which inherits the confirmed effectiveness of modeling proportional data from infinite Dirichlet mixture model. Based on the Dirichlet process mixture model, VarInDMM has an interpretat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless personal communications 2018-10, Vol.102 (3), p.2307-2329
Hauptverfasser: Lai, Yuping, He, Wenda, Ping, Yuan, Qu, Jinshuai, Zhang, Xiufeng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we focus on a variational Bayesian learning approach to infinite Dirichlet mixture model (VarInDMM) which inherits the confirmed effectiveness of modeling proportional data from infinite Dirichlet mixture model. Based on the Dirichlet process mixture model, VarInDMM has an interpretation as a mixture model with a countably infinite number of components, and it is able to determine the optimal value of this number according to the observed data. By introducing an extended variational inference framework, we further obtain an analytically tractable solution to estimate the posterior distributions of the parameters for the mixture model. Experimental results on both synthetic and real data demonstrate its good performance on object categorization and text categorization.
ISSN:0929-6212
1572-834X
DOI:10.1007/s11277-018-5723-4