Ultrafast Channel II process induced by a 3-D texture with enhanced acceptor order ranges for high-performance non-fullerene polymer solar cells
To achieve efficient non-fullerene polymer solar cells (NF-PSCs), an in-depth understanding of the key properties that govern the power output is necessary. Herein, three trialkylsilyl substituted benzodithiophene-based polymer donors (PJ1, PJ2, and PJ3) were synthesized with fine-tuning of the high...
Gespeichert in:
Veröffentlicht in: | Energy & environmental science 2018-09, Vol.11 (9), p.2569-2580 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To achieve efficient non-fullerene polymer solar cells (NF-PSCs), an in-depth understanding of the key properties that govern the power output is necessary. Herein, three trialkylsilyl substituted benzodithiophene-based polymer donors (PJ1, PJ2, and PJ3) were synthesized with fine-tuning of the highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO) and optical absorption. Using the polymer series paired with absorption-complementary small molecular acceptors (SMAs), namely,
m
-ITIC, IDIC, and AIDIC, we systematically studied the performance of a 3 × 3 matrix of NF-PSCs. An increasing open-circuit voltage with deepening HOMOs of the polymer donors, and the enhanced short-circuit current (
J
SC
) and fill factor (FF) were ascribed to the well-intermixed blend morphology containing enhanced SMA order ranges with mixed face-on and edge-on orientations, the so-called 3-D texture. Such an optimal microstructure is best exemplified in the PJ2:IDIC combination, affording a highest efficiency of 12.01% with a simultaneously high
J
SC
of 17.0 mA cm
−2
and FF of 75.3%. The devices with an active layer thickness of 300 nm still maintain an impressive efficiency approaching 10% with a decent FF of 60.0%. Moreover, the Channel II process,
i.e.
, photoinduced hole transfer through acceptor excitation, was demonstrated to be crucially important for photocurrent generation. This study highlights the importance of optimizing the trade-off between charge separation/transport and domain size to achieve high-performance NF-PSCs. |
---|---|
ISSN: | 1754-5692 1754-5706 |
DOI: | 10.1039/C8EE01546E |