Predicting Global Ground Geoelectric Field With Coupled Geospace and Three-Dimensional Geomagnetic Induction Models

We forecast the global effects of space weather on the geoelectric and geomagnetic fields using a novel combination of methods. We use a realistic three-dimensional (3-D) model of Earth's electrical conductivity and a realistic representation of magnetospheric and ionospheric current systems. O...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Space Weather 2018-08, Vol.16 (8), p.1028-1041
Hauptverfasser: Honkonen, I., Kuvshinov, A., Rastatter, L., Pulkkinen, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We forecast the global effects of space weather on the geoelectric and geomagnetic fields using a novel combination of methods. We use a realistic three-dimensional (3-D) model of Earth's electrical conductivity and a realistic representation of magnetospheric and ionospheric current systems. Our scheme involves the following steps: (1) We run a global magnetohydrodynamic model of the magnetosphere coupled to an electrostatic model of the ionosphere. (2) We calculate a global time series of the ground magnetic field resulting from the ionospheric, field-aligned, and magnetospheric currents of the global magnetohydrodynamic model. (3) We approximate this external field by an equivalent source current flowing in a thin shell above Earth. (4) We calculate a global time series of geoelectric and geomagnetic fields from the equivalent current and a 3-D conductivity model of Earth that also takes into account the coast effect due to large horizontal conductivity gradient. We verify our implementation by comparing the results against known analytic and numeric solutions, and then apply our scheme to the geomagnetic storm of 14 and 15 December 2006. In particular, we show that accounting for 3-D structure of Earth's conductivity results in significantly enhanced geoelectric field at large lateral gradients of conductivity, especially in coastal regions, both at middle and high latitudes. In the studied geomagnetic storm the largest values of 3-D geoelectric field are detected at high latitudes reaching 2.5 volts per kilometer and the 3-D effect extends inland by a few hundred kilometers.
ISSN:1542-7390
1539-4964
1542-7390
DOI:10.1029/2018SW001859