Neuroplasticity in the cerebello-thalamo-basal ganglia pathway: A longitudinal in vivo MRI study in male songbirds

Similar to human speech, bird song is controlled by several pathways including a cortico-basal ganglia-thalamo-cortical (C-BG-T-C) loop. Neurotoxic disengagement of the basal ganglia component, i.e. Area X, induces long-term changes in song performance, while most of the lesioned area regenerates wi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2018-11, Vol.181, p.190-202
Hauptverfasser: Hamaide, Julie, Lukacova, Kristina, Van Audekerke, Johan, Verhoye, Marleen, Kubikova, Lubica, Van der Linden, Annemie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Similar to human speech, bird song is controlled by several pathways including a cortico-basal ganglia-thalamo-cortical (C-BG-T-C) loop. Neurotoxic disengagement of the basal ganglia component, i.e. Area X, induces long-term changes in song performance, while most of the lesioned area regenerates within the first months. Importantly however, the timing and spatial extent of structural neuroplastic events potentially affecting other constituents of the C-BG-T-C loop is not clear. We designed a longitudinal MRI study where changes in brain structure were evaluated relative to the time after neurotoxic lesioning or to vocal performance. By acquiring both Diffusion Tensor Imaging and 3-dimensional anatomical scans, we were able to track alterations in respectively intrinsic tissue properties and local volume. Voxel-based statistical analyses revealed structural remodeling remote to the lesion, i.e. in the thalamus and, surprisingly, the cerebellum, both peaking within the first two months after lesioning Area X. Voxel-wise correlations between song performance and MRI parameters uncovered intriguing brain-behavior relationships in several brain areas pertaining to the C-BG-T-C loop supervising vocal motor control. Our results clearly point to structural neuroplasticity in the cerebellum induced by basal ganglia (striatal) damage and might point to the existence of a human-like cerebello-thalamic-basal ganglia pathway capable of modifying vocal motor output. •Striatal lesioning suggests human-like cerebellar input in song control pathway.•Song correlates with DTI metrics of cortico-basal ganglia thalamo-cortical loop.•Striatal lesioning induces long-term decrease in song motif duration.•Lesion-induced microstructural remodeling peaks within first the 2 months.
ISSN:1053-8119
1095-9572
DOI:10.1016/j.neuroimage.2018.07.010