Asymptotic efficiency for covariance estimation under noise and asynchronicity
The estimation of the covariance structure from a discretely observed multivariate Gaussian process under asynchronicity and noise is analysed under high-frequency asymptotics. Asymptotic lower and upper bounds are established for a general Gaussian framework which provides benchmark cases for vario...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2020-04 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The estimation of the covariance structure from a discretely observed multivariate Gaussian process under asynchronicity and noise is analysed under high-frequency asymptotics. Asymptotic lower and upper bounds are established for a general Gaussian framework which provides benchmark cases for various Gaussian process models of interest. The parametric bounds give rise to infinite-dimensional convolution theorems for covariation estimation under asynchronicity, which is an essential estimation problem in finance. |
---|---|
ISSN: | 2331-8422 |