Asymptotic efficiency for covariance estimation under noise and asynchronicity

The estimation of the covariance structure from a discretely observed multivariate Gaussian process under asynchronicity and noise is analysed under high-frequency asymptotics. Asymptotic lower and upper bounds are established for a general Gaussian framework which provides benchmark cases for vario...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2020-04
1. Verfasser: Holtz, Sebastian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The estimation of the covariance structure from a discretely observed multivariate Gaussian process under asynchronicity and noise is analysed under high-frequency asymptotics. Asymptotic lower and upper bounds are established for a general Gaussian framework which provides benchmark cases for various Gaussian process models of interest. The parametric bounds give rise to infinite-dimensional convolution theorems for covariation estimation under asynchronicity, which is an essential estimation problem in finance.
ISSN:2331-8422